Skip to main content

Advertisement

Log in

Role of NQO1 609C>T and NQO2 −3423G>A gene polymorphisms in esophageal cancer risk in Kashmir valley and meta analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Esophageal cancer (EC) is a complex multifactorial disorder, where environmental and genetic factors play major role. NADPH:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2) are phase II cytosolic enzymes that catalyze metabolism of quinones, important in the detoxification of environmental carcinogens. A case–control study was performed to investigated the associations of NQO1 609C>T and NQO2 −3423G>A polymorphisms with susceptibility to EC in a high-risk Kashmiri population of India in 135 EC patients and 195 unrelated healthy controls using PCR-RFLP. We also performed a meta analysis of nine published studies (1,224 cases and 1,740 controls) on NQO1 609C>T and evaluated the association between the NQO1 609C>T polymorphisms and esophageal cancer risk. A significant difference in NQO1 609C>T and NQO2 −3423G>A genotype distribution between EC cases and corresponding controls groups was observed (OR = 2.65; 95 % CI = 1.29–5.42 and OR = 1.88; 95 % CI = 1.02–3.49 respectively). Further, gene–gene interaction showed significantly increased risk for esophageal adenocarcinoma with variant genotypes of NQO1 609C>T and NQO2 −3423G>A polymorphisms and interaction with environmental risk factors revealed pronounced risk of EC with NQO1 609C>T TT genotype in high salted tea users of Kashmir valley (OR = 3.72, 95 % CI = 0.98–14.19). Meta analysis of NQO 609C>T polymorphism also suggested association of the polymorphism with EC in Asians as well as Europeans. In conclusion, NQO1 609C>T and NQO2 −3423G>A genetic variations modulate risk of EC in high-risk Kashmir population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Umar SB, Fleischer DE (2008) Esophageal cancer: epidemiology, pathogenesis and prevention. Nat Clin Pract Gastroenterol Hepatol 5:517–526

    Article  Google Scholar 

  2. Malkan G, Mohandas KM (1997) Epidemiology of digestive cancers in India. I. General principles and esophageal cancer. Indian J Gastroenterol 16:98–102

    CAS  PubMed  Google Scholar 

  3. Siddiqi M, Tricker AR, Preussmann R (1988) Formation of N-nitroso compounds under simulated gastric conditions from Kashmir foodstuffs. Cancer Lett 39:259–265

    Article  CAS  PubMed  Google Scholar 

  4. Khuroo MS, Zargar SA, Mahajan R et al (1992) High incidence of oesophageal and gastric cancer in Kashmir in a population with special personal and dietary habits. Gut 33:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siddiqi M, Kumar R, Fazili Z et al (1992) Increased exposure to dietary amines and nitrate in a population at high risk of oesophageal and gastric cancer in Kashmir (India). Carcinogenesis 13:133–1331

    Article  Google Scholar 

  6. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207

    Article  CAS  PubMed  Google Scholar 

  7. Traver RD, Siegel D, Beall HD et al (1997) Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). Br J Cancer 75:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siegel D, McGuinness SM, Winski et al (1999) Genotype-phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetics 9:113–121

    Article  CAS  PubMed  Google Scholar 

  9. Misra V, Grondin A, Klamut HJ et al (2000) Assessment of the relationship between genotypic status of a DT-diaphorase point mutation and enzymatic activity. Br J Cancer 83:998–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuehl BL, Paterson JW, Peacock JW et al (1995) Presence of a heterozygous substitution and its relationship to DT-diaphorase activity. Br J Cancer 72:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nebert DW, Roe AL, Vandale SE et al (2002) NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: a HuGE review. Genet Med 4:62–70

    Article  CAS  PubMed  Google Scholar 

  12. Kelsey KT, Ross D, Traver RD et al (1997) Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br J Cancer 76:852–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang JH, Li Y, Wang R et al (2003) NQO1 C609T polymorphism associated with esophageal cancer and gastric cardiac carcinoma in North China. World J Gastroenterol 9:1390–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang WC, Yin LH, Pu YP et al (2006) Relationship between quinone oxidoreductase1 gene ns-cSNP and genetic susceptibility of esophageal cancer. Zhonghua Yu Fang Yi Xue Za Zhi 40:324–327

    CAS  PubMed  Google Scholar 

  15. di Martino E, Hardie LJ, Wild CP et al (2007) The NAD(P)H:quinone oxidoreductase I C609T polymorphism modifies the risk of Barrett esophagus and esophageal adenocarcinoma. Genet Med 9:341–347

    Article  PubMed  Google Scholar 

  16. Wiemels JL, Pagnamenta A, Taylor GM et al (1999) A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res 59:4095–4099

    CAS  PubMed  Google Scholar 

  17. Smith MT, Wang Y, Kane E et al (2001) Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. Blood 97:1422–1426

    Article  CAS  PubMed  Google Scholar 

  18. Clairmont A, Sies H, Ramachandran S, Strange RC et al (1999) Association of NAD(P)H:quinone oxidoreductase (NQO1) null with numbers of basal cell carcinomas: use of a multivariate model to rank the relative importance of this polymorphism and those at other relevant loci. Carcinogenesis 20:1235–1240

    Article  CAS  PubMed  Google Scholar 

  19. Iida A, Sekine A, Saito S et al (2001) Catalog of 320 single nucleotide polymorphisms (SNPs) in 20 quinone oxidoreductase and sulfotransferase genes. J Hum Genet 46:225–240

    Article  CAS  PubMed  Google Scholar 

  20. Harada S, Fujii C, Hayashi A et al (2001) An association between idiopathic Parkinson’s disease and polymorphisms of phase II detoxification enzymes: glutathione S-transferase M1 and quinone oxidoreductase 1 and 2. Biochem Biophys Res Commun 288:887–892

    Article  CAS  PubMed  Google Scholar 

  21. Jamieson D, Wilson K, Pridgeon S et al (2007) NAD(P)H:quinone oxidoreductase 1 and NRH:quinone oxidoreductase 2 activity and expression in bladder and ovarian cancer and lower NRH:quinone oxidoreductase 2 activity associated with an NQO2 exon 3 single-nucleotide polymorphism. Clin Cancer Res 13:1584–1590

    Article  CAS  PubMed  Google Scholar 

  22. www. hapmap.ncbi.nlm.nih.gov

  23. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res 16:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malik MA, Zargar SA, Mittal B (2001) Role of NQO1 609C>T and NQO2 −3423G>A polymorphisms in susceptibility to gastric cancer in Kashmir valley. DNA Cell Biol 30:297–303

    Article  Google Scholar 

  25. Comprehensive meta analysis version 2.0

  26. Hamajima N, Matsuo K, Iwata H et al (2002) NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism and the risk of eight cancers for Japanese. Int J Clin Oncol 7:103–108

    CAS  PubMed  Google Scholar 

  27. Zhang J, Schulz WA, Li Y et al (2003) Association of NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism with esophageal squamous cell carcinoma in a German Caucasian and a northern Chinese population. Carcinogenesis 24:905–909

    Article  PubMed  Google Scholar 

  28. Sarbia M, Bitzer M, Siegel D et al. (2003) Association between NAD(P)H: quinone oxidoreductase 1 (NQ01) inactivating C609T polymorphism and adenocarcinoma of the upper gastrointestinal tract. Int J Cancer 10:107(3):381–6

    Google Scholar 

  29. von Rahden BH, Stein HJ, Langer R et al. (2005) C609T polymorphism of the NAD(P)H:quinone oxidoreductase I gene does not significantly affect susceptibility for esophageal adenocarcinoma. Int J Cancer 20:113(3):506–8

    Google Scholar 

  30. Marjani HA, Biramijamal F, Rakhshani N et al. (2010) Investigation of NQO1 genetic polymorphism, NQO1 gene expression and PAH-DNA adducts in ESCC. A case–control study from Iran. Genet Mol Res 9:9(1):239–49

    Google Scholar 

  31. Zhang JH, Li Y, Wang R et al (2003) The NAD(P)H: quinone oxidoreductase 1 C609T polymorphism and susceptibility to esophageal cancer. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 20(6):544–546

    CAS  PubMed  Google Scholar 

  32. Li Y, Zhang JH, Guo W et al (2004) Polymorphism of NAD(P)H dehydrogenase (quinone) 1 (NQO1) C609 T and risk of esophageal neoplasm. Zhonghua Liu Xing Bing Xue Za Zhi 25(8):731

    CAS  PubMed  Google Scholar 

  33. Strassburg A, Strassburg CP, Manns MP et al (2002) Differential gene expression of NAD(P)H:quinone oxidoreductase and NRH:quinone oxidoreductase in human hepatocellular and biliary tissue. Mol Pharmacol 61:320–325

    Article  CAS  PubMed  Google Scholar 

  34. Siddiqi M, Preussmann R (1989) Esophageal cancer in Kashmir—an assessment. J Cancer Res Clin Oncol 115:111–117

    Article  CAS  PubMed  Google Scholar 

  35. Iskander K, Jaiswal AK (2005) Quinone oxidoreductases in protection against myelogenous hyperplasia and benzene toxicity. Chem Biol Interact 153(154):147–157

    Article  PubMed  Google Scholar 

  36. Iskander K, Barrios RJ, Jaiswal AK (2009) NRH:quinone oxidoreductase 2-deficient mice are highly susceptible to radiation-induced B-cell lymphomas. Clin Cancer Res 15:1534–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malik MA, Upadhyay R, Modi DR et al (2009) Association of NAT2 gene polymorphisms with susceptibility to esophageal and gastric cancers in the Kashmir valley. Arch Med Res 40:416–423

    Article  CAS  PubMed  Google Scholar 

  38. Malik MA, Upadhyay R, Mittal RD et al (2009) Role of xenobiotic-metabolizing enzyme gene polymorphisms and interactions with environmental factors in susceptibility to gastric cancer in Kashmir valley. J Gastrointest Cancer 40:26–32

    Article  CAS  PubMed  Google Scholar 

  39. Li K, Ren YW, Wan Y et al (2012) SULT1A1 Arg213His polymorphism and susceptibility of environment-related cancers: a meta analysis of 5,915 cases and 7,900 controls. Mol Biol Rep 39:2597–605

    Google Scholar 

Download references

Acknowledgments

The study was supported by a research grant from the Indian Council of Medical Research (ICMR), New Delhi. The authors thank Ms. Anshika Srivastava for her help in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balraj Mittal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, M.A., Zargar, S.A. & Mittal, B. Role of NQO1 609C>T and NQO2 −3423G>A gene polymorphisms in esophageal cancer risk in Kashmir valley and meta analysis. Mol Biol Rep 39, 9095–9104 (2012). https://doi.org/10.1007/s11033-012-1781-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1781-y

Keywords

Navigation