Skip to main content
Log in

Characterization of transcriptional activation and inserted-into-gene preference of various transposable elements in the Brassica species

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) have attracted increasing attention because of their tremendous contributions to genome reorganization and gene variation through dramatic proliferation and excision via transposition. However, less known are the transcriptional activation of various TEs and the characteristics of TE insertion into genomes at the genome-wide level. In the present study, we focused on TE genes for transposition and gene disruption by insertion of TEs in expression sequences of Brassica, to investigate the transcriptional activation of TEs, the biased insertion of TEs into genes, and their salient characteristics. Long terminal repeat (LTR-retrotransposon) accounted for the majority of these active TE genes (70.8%), suggesting that transposition activation varied with TE type. 6.1% genes were interrupted by LTR-retrotransposons, which indicated their preference for insertion into genes. TEs were preferentially inserted into cellular component-specific genes acted as “binding” elements and involved in metabolic processes. TEs have a biased insertion into some host genes that were involved with important molecular functions and TE genes exhibited spatiotemporal expression. These results suggested that various types of transposons differentially contributed to gene variation and affected gene function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ast G, Levy A, Schwartz S (2010) Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res 38(5):1515–1530

    Article  PubMed  Google Scholar 

  2. Deloger M, Cavalli FM, Lerat E, Biemont C, Sagot MF, Vieira C (2009) Identification of expressed transposable element insertions in the sequenced genome of Drosophila melanogaster. Gene 439(1–2):55–62

    Article  PubMed  CAS  Google Scholar 

  3. McClintock B (1949) Mutable loci in maize. Carnegie Institution of Washington Year Book 48:142–154

    Google Scholar 

  4. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  PubMed  CAS  Google Scholar 

  5. Vicient CM (2010) Trascriptional activity of transposable elements in maize. BMC Genomics 11:1471–2164

    Article  Google Scholar 

  6. Carr PD, Tuckwell D, Hey PM, Simon L, d’Enfert C, Birch M, Oliver JD, Bromley MJ (2010) The transposon impala is activated by low temperatures: use of a controlled transposition system to identify genes critical for viability of aspergillus fumigatus. Eukaryot Cell 9(3):438–448

    Article  PubMed  CAS  Google Scholar 

  7. Blot M (1994) Transposable elements and adaptation of host bacteria. Genetica 93(1–3):5–12

    Article  PubMed  CAS  Google Scholar 

  8. Emery PT, Robinson TE, Duddington R, Brookfield JF (1999) What is the impact of transposable elements on host genome variability? Proc Biol Sci 266(1429):1677–1683

    Article  PubMed  CAS  Google Scholar 

  9. Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55(1):1–24

    PubMed  CAS  Google Scholar 

  10. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284(5757):601–603

    Article  PubMed  CAS  Google Scholar 

  11. Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15(3):95–99

    Article  PubMed  Google Scholar 

  12. Sinzelle L, Izsvak Z, Ivics Z (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci 66(6):1073–1093

    Article  PubMed  CAS  Google Scholar 

  13. Staber J, Burnightt E, Korsakov P, Sarvida ME, McCaffrey A, Kaminski J, McCray P (2010) A gene transfer approach towards hemophilia a correction using the piggybac transposon vector. Pediatr Res 68(4):356

    Google Scholar 

  14. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 5:814–821

    Google Scholar 

  15. Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42(1):251–269

    Article  PubMed  CAS  Google Scholar 

  16. Grover CE, Wendel JE (2010) Recent insights into mechanisms of genome size change in plants. J Bot

  17. Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461(7262):423–426

    Article  PubMed  CAS  Google Scholar 

  18. Bourque G (2009) Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 19(6):607–612

    Article  PubMed  CAS  Google Scholar 

  19. Whitelaw E, Martin DIK (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27:361–365

    Article  PubMed  CAS  Google Scholar 

  20. Belancio VP, Deininger PL, Roy-Engel AM (2009) LINE dancing in the human genome: transposable elements and disease. Genome Med 1(10):97

    Article  PubMed  Google Scholar 

  21. Bureau TE, Wessler SR (1994) Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 91(4):1411–1415

    Article  PubMed  CAS  Google Scholar 

  22. Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421(6919):170–172

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater JM (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J 61(4):545–557

    Article  PubMed  CAS  Google Scholar 

  24. Nuzhdin SV (1999) Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica 107:129–137

    Article  PubMed  CAS  Google Scholar 

  25. Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461(7267):1130–1134

    Article  PubMed  CAS  Google Scholar 

  26. Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186(1):37–45

    Article  PubMed  CAS  Google Scholar 

  27. Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12(6):2521–2528

    PubMed  CAS  Google Scholar 

  28. Leib-Mosch C, Seifarth W (1995) Evolution and biological significance of human retroelements. Virus Genes 11:133–145

    Article  PubMed  CAS  Google Scholar 

  29. Biemont C (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186(4):1085–1093

    Article  PubMed  CAS  Google Scholar 

  30. Alix K, Sarilar V, Marmagne A, Brabant P, Joets J (2011) BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. Plant Mol Biol 77(1–2):59–75

    PubMed  Google Scholar 

  31. Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Heslop-Harrison JS (2008) The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J 56(6):1030–1044

    Article  PubMed  CAS  Google Scholar 

  32. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet

  33. Wang H, Xu Z (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–W268

    Article  PubMed  Google Scholar 

  34. Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832

    PubMed  Google Scholar 

  35. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  36. Librado PaR J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  Google Scholar 

  37. Baucom RS, Estill JC, Leebens-Mack J, Bennetzen JL (2009) Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Genome Res 19(2):243–254

    Article  PubMed  CAS  Google Scholar 

  38. Ma JX, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14(5):860–869

    Article  PubMed  CAS  Google Scholar 

  39. Matzke MA, Matzke AJ (1998) Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell Mol Life Sci 54(1):94–103

    Article  PubMed  CAS  Google Scholar 

  40. Reinders J, Wulff BBH, Mirouze M, Mari-Ordonez A, Dapp M, Rozhon W, Bucher E, Theiler G, Paszkowski J (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23(8):939–950

    Article  PubMed  CAS  Google Scholar 

  41. Forstemann K (2010) Transposon defense in Drosophila somatic cells: a model for distinction of self and non-self in the genome. RNA Biol 7(2):158–161

    Article  PubMed  Google Scholar 

  42. Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37(6):641–644

    Article  PubMed  CAS  Google Scholar 

  43. Cam HP, Noma K, Ebina H, Levin HL, Grewal SIS (2008) Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 451(7177):431–436

    Article  PubMed  CAS  Google Scholar 

  44. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8(4):272–285

    Article  PubMed  CAS  Google Scholar 

  45. McDonald JF, Matzke MA, Matzke AJ (2005) Host defenses to transposable elements and the evolution of genomic imprinting. Cytogenet Genome Res 110(1–4):242–249

    Article  PubMed  CAS  Google Scholar 

  46. Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mobile DNA 1(1):6

    Article  PubMed  Google Scholar 

  47. Venner S, Feschotte C, Biemont C (2009) Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet 25(7):317–323

    Article  PubMed  CAS  Google Scholar 

  48. Gbadegesin MA, Beeching JR (2010) Enhancer/Suppressor mutator (En/Spm)-like transposable elements of cassava (Manihot esculenta) are transcriptionally inactive. Genet Mol Res 9(2):639–650

    Article  PubMed  CAS  Google Scholar 

  49. Sakowicz T, Gadzalski M, Pszczolkowski W (2009) Sines elements in plant genomes. Postepy Biol Komorki 36(1):37–53

    CAS  Google Scholar 

  50. Frey M, Reinecke J, Grant S, Saedler H, Gierl A (1990) Excision of the En/Spm transposable element of Zea mays requires two element-encoded proteins. EMBO J 9(12):4037–4044

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by grants from the Fundamental Research Funds for the Central Universities, National Natural Science Foundation of China (code: 31071450) and National Science and Technology Ministry (code: 2009BADA8B01). We would like to thank Lu Junxing, Li Xiaoxia and Fu Chun for technical assistance. We would like to thank Doctor Katrin Link for her constructive comments on this review and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghui Fu or Zhanglin Tang.

Additional information

Caihua Gao and Meili Xiao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1. Phylogenetic analysis of TE genes for transposition and TEs that inserted in genes. (XLS 28 kb)

11033_2012_1585_MOESM2_ESM.xls

Online Resource 2. Genes disrupted by TE that homologous to the genes known to control traits in Arabidopsis thaliana. (XLS 32 kb)

11033_2012_1585_MOESM3_ESM.xls

Online Resource 3. List of cellular components, biological process and molecular function of the genes that inserted by LTR-retrotranspons, and SINE-retransposons. (XLS 546 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, C., Xiao, M., Jiang, L. et al. Characterization of transcriptional activation and inserted-into-gene preference of various transposable elements in the Brassica species. Mol Biol Rep 39, 7513–7523 (2012). https://doi.org/10.1007/s11033-012-1585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1585-0

Keywords

Navigation