Skip to main content

Advertisement

Log in

Metabolomics in the fields of oncology: a review of recent research

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The study of all endogenously produced metabolites, known as metabolomics, is the youngest of the “omics” sciences. It is becoming increasingly clear that, of all of the “omics” techniques, metabolomic approaches will become increasingly useful in disease diagnosis and have potential power to improve our understanding of the underlying mechanisms of cancer. The primary aim of the review is to discuss the relationship between metabolomics and tumors are elucidated in detail. Then the review is also to introduce the technologies of metabolomics, especially emphasizing the application of metabolomics in the fields of oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GC–MS:

Gas chromatography–mass spectrometry

LC–MS:

Lipid chromatography–mass spectrometry

ICP-MS:

Inductively coupled plasma mass spectrometry

FT-MS:

Fourier-transform mass spectrometry

NMR:

Nuclear magnetic resonance

FT-IR:

Fourier-transform infrared spectrometry

TLC:

Thin-layer chromatography

HCC:

Human hepatocellular carcinoma

5-FU:

5-Fluoropyrimidine

References

  1. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabolomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  PubMed  CAS  Google Scholar 

  2. Nicholson JK, Connelly J, Lindon JC et al (2002) Metabolomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161

    Article  PubMed  CAS  Google Scholar 

  3. Raamsdonk LM, Teusink B, Broadhurst D et al (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  PubMed  CAS  Google Scholar 

  4. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  PubMed  CAS  Google Scholar 

  5. Fiehn O (2002) Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  PubMed  CAS  Google Scholar 

  6. Fiehn O, Kopka J, Dormann P et al (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  PubMed  CAS  Google Scholar 

  7. Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    Article  PubMed  CAS  Google Scholar 

  8. Seger C, Sturm S (2007) Analytical aspects of plant metabolite profiling platforms: current standings and future aims. J Proteome Res 6:480–497

    Article  PubMed  CAS  Google Scholar 

  9. Plumb RS, Stumpf CI, Granger JH, Castro-Perez J, Haselden JN, Dear GJ (2003) Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun Mass Spectrom 17:2632–2638

    Article  PubMed  CAS  Google Scholar 

  10. Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK (2010) Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5(6):1005–1018

    Google Scholar 

  11. Fonville JM, Maher AD, Coen M et al (2010) Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Anal Chem 82(5):1811–1821

    Article  PubMed  CAS  Google Scholar 

  12. Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 30(4):442–465

    Google Scholar 

  13. Ritchie SA, Ahiahonu PW, Jayasinghe D et al (2010) Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection. BMC Med 8:13

    Google Scholar 

  14. Lindon JC, Holmes E, Nicholson JK (2003) So what’s the deal with metabolomics? Anal Chem 75:384A–391A

    Article  PubMed  CAS  Google Scholar 

  15. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  PubMed  CAS  Google Scholar 

  16. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59

    Article  PubMed  CAS  Google Scholar 

  17. Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255

    Article  PubMed  CAS  Google Scholar 

  18. Tweeddale H, Notley-Mcrobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116

    PubMed  CAS  Google Scholar 

  19. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2:155–168

    Article  PubMed  CAS  Google Scholar 

  20. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Natl Rev Mol Cell Biol 5:763–769

    Article  CAS  Google Scholar 

  21. Niwa T (1986) Metabolic profiling with gas chromatography–mass spectrometry and its application to clinical medicine. J Chromatogr 379:313–345

    Article  PubMed  CAS  Google Scholar 

  22. Nicholson JK, Wilson ID (2003) Understanding “global” systems biology: metabolomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676

    Article  PubMed  CAS  Google Scholar 

  23. Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131:875–885

    Article  PubMed  CAS  Google Scholar 

  24. Costello LC, Franklin RB (2005) Why do tumour cells glycolyse? From glycolysis through citrate to lipogenesis. Mol Cell Biochem 280:1–8

    Article  PubMed  CAS  Google Scholar 

  25. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  26. Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB, Gygi SP, Korsmeyer SJ (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424:952–956

    Article  PubMed  CAS  Google Scholar 

  27. Cairns R, Papandreou I, Denko N (2006) Overcoming Physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4:61–70

    Article  PubMed  CAS  Google Scholar 

  28. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    Article  PubMed  CAS  Google Scholar 

  29. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  30. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  31. Meng F, Wiener MC, Sachs JR (2007) Quantitative analysis of complex peptide mixtures using FTMS and differential mass spectrometry. J Am Soc Mass Spectrom 18:226–233

    Article  PubMed  CAS  Google Scholar 

  32. Dekker LJ, Burgers PC, Guzel C, Luider TM (2007) FTMS and TOF/TOF mass spectrometry in concert: identifying peptides with high reliability using matrix prespotted MALDI target plates. J Chromatogr B Anal Technol Biomed Life Sci 847:62–64

    Article  CAS  Google Scholar 

  33. Jones JJ, Borgmann S, Wilkins CL, O’Brien RM (2006) Characterizing the phospholipid profiles in mammalian tissues by MALDI FTMS. Anal Chem 78:3062–3071

    Article  PubMed  CAS  Google Scholar 

  34. Pan Z, Raftery D (2007) Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem 387:525–527

    Article  PubMed  CAS  Google Scholar 

  35. Lindon JC, Holmes E, Nicholson JK (2004) Metabolomics and its role in drug development and disease diagnosis. Expert Rev Mol Diag 4:189–199

    Article  CAS  Google Scholar 

  36. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2005) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 2:245–252

    Google Scholar 

  37. Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23:7350–7360

    Article  PubMed  CAS  Google Scholar 

  38. Florian CL, Preece NE, Bhakoo KK, Williams SR, Noble MD (1995) Characteristic metabolic profiles revealed by 1H NMR spectroscopy for three types of human brain and nervous system tumours. NMR Biomed 8:253–264

    Article  PubMed  CAS  Google Scholar 

  39. Florian CL, Preece NE, Bhakoo KK, Williams SR, Nobel MD (1995) Cell type-specific fingerprinting of meningioma and meningeal cells by proton nuclear magnetic resonance spectroscopy. Cancer Res 55:420–427

    PubMed  CAS  Google Scholar 

  40. Ben-Yoseph O, Badar-Goffer RS, Morris PG, Bachelard HS (1993) Glycerol 3-phosphate and lactate as indicators of the cerebral cytoplasmic redox state in severe and mild hypoxia respectively: a 13C- and 31P-n. m. r. study. Biochem J 291:915–919

    PubMed  CAS  Google Scholar 

  41. Chen J, Wang W, Lv S et al (2009) Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal Chim Acta 650(1):3–9

    Google Scholar 

  42. Masuo Y, Imai T, Shibato J, Hirano M, Jones OA, Maguire ML, Satoh K, Kikuchi S, Rakwal R (2009) Omic analyses unravels global molecular changes in the brain and liver of a rat model for chronic Sake (Japanese alcoholic beverage) intake. Electrophoresis 30(8):1259–1275

    Google Scholar 

  43. Hakumäki JM, Poptani H, Puumalainen AM, Loimas S, Paljärvi LA, Ylä-Herttuala S, Kauppinen RA (1998) Quantitative 1H NMR diffusion spectroscopy pf BT4C rat glioma during thymidine kinasemediated gene therapy in vivo: identification of apoptotic response. Cancer Res 58:3791–3799

    PubMed  Google Scholar 

  44. Tate AR, Crabb S, Griffiths JR, Howells SL, Mazucco RA, Rodrigues LM, Watson D (1996) Lipid metabolite peaks in pattern recognition analysis of tumour in vivo MR spectra. Anticancer Res 16:1575–1579

    PubMed  CAS  Google Scholar 

  45. Millis K, Weybright P, Campbell N, Fletcher JA, Fletcher CD, Cory DG, Singer S (1999) Classification of human liposarcoma and lipoma using ex vivo proton NMR spectroscopy. Magn Reson Med 41:257–267

    Article  PubMed  CAS  Google Scholar 

  46. Mountford CE, Wright LC (1988) Organization of lipids in the plasma membranes of malignant and stimulated cells: a new model. Trends Biochem Sci 13:172–177

    Article  PubMed  CAS  Google Scholar 

  47. Callies R, Sri-Pathmanathan RM, Ferguson DY, Brindle KM (1993) The appearance of neutral lipid signals in the 1H NMR spectra of a myeloma cell line correlates with the induced formation of cytoplasmic lipid droplets. Magn Reson Med 29:546–550

    Article  PubMed  CAS  Google Scholar 

  48. Cheng LL, Lean CL, Bogdanova A, Wright SC Jr, Ackerman JL, Brady TJ, Garrido L (1996) Enhanced resolution of proton NMR spectra of malignant lymph nodes using magic angle spinning. Magn Reson Med 36:653–658

    Article  PubMed  CAS  Google Scholar 

  49. Chen JH, Enloe BM, Fletcher CD, Cory DG, Singer S (2001) Biochemical analysis using high-resolution magic angle spinning NMR spectroscopy distinguishes lipoma-like well-differentiated liposarcoma from normal fat. J Am Chem Soc 123:9200–9201

    Article  PubMed  CAS  Google Scholar 

  50. Tomlins A (1998) High resolution magic angle spinning 1H nuclear magnetic resonance analysis of intact prostatic hyperplastic and tumour tissues. Anal Comm 35:113–115

    Article  CAS  Google Scholar 

  51. Griffiths JR, Stubbs M (2003) Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1. Adv Enzyme Regul 43:67–76

    Article  PubMed  CAS  Google Scholar 

  52. Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, Pokrupa R, Arnold DL (1996) Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Med 2:323–325

    Article  PubMed  CAS  Google Scholar 

  53. Howells SL, Maxwell RJ, Peet AC, Griffiths JR (1992) An investigation of tumor 1H nuclear magnetic resonance spectra by the application of chemometric techniques. Magn Reson Med 28:214–236

    Article  PubMed  CAS  Google Scholar 

  54. Carmichael PL (1998) Mechanisms of action of antiestrogens: relevance to clinical benefits and risks. Cancer Invest 16:604–611

    Article  PubMed  CAS  Google Scholar 

  55. Beckonert O, Monnerjahn J, Bonk U, Leibfritz D (2003) Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed 16:1–11

    Article  PubMed  CAS  Google Scholar 

  56. Lehtimäki KK, Valonen PK, Griffin JL, Väisänen TH, Gröhn OH, Kettunen MI, Vepsäläinen J, Ylä-Herttuala S, Nicholson J, Kauppinen RA (2003) Metabolite changes in BT4C rat gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death as studied by 1H NMR spectroscopy in vivo, ex vivo, and in vitro. J Biol Chem 278:45915–45923

    Article  PubMed  Google Scholar 

  57. Williams SN, Anthony ML, Brindle KM (1998) Induction of apoptosis in two mammalian cell lines results in increased levels of fructose-1,6-phosphate and CDP-choline as determined by 31P MRS. Magn Reson Med 40:411–420

    Article  PubMed  CAS  Google Scholar 

  58. Anthony ML, Zhao M, Brindle KM (1999) Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. J Biol Chem 274:19686–19692

    Article  PubMed  CAS  Google Scholar 

  59. Griffin JL, Lehtimäki KK, Valonen PK, Gröhn OH, Kettunen MI, Ylä-Herttuala S, Pitkänen A, Nicholson JK, Kauppinen RA (2003) Assignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death. Cancer Res 63:3195–3201

    PubMed  CAS  Google Scholar 

  60. Singer S, Millis K, Souza K, Fletcher C (1997) Correlation of lipid content and composition with liposarcoma histology and grade. Ann Surg Oncol 4:557–563

    Article  PubMed  CAS  Google Scholar 

  61. El-Sayed S, Bezabeh T, Odlum O, Patel R, Ahing S, MacDonald K, Somorjai RL, Smith IC (2002) An ex vivo study exploring the diagnostic potential of 1H magnetic resonance spectroscopy in squamous cell carcinoma of the head and neck region. Head Neck 24:766–772

    Article  PubMed  Google Scholar 

  62. Moreno A, López LA, Fabra A, Arús C (1998) 1H MRS markers of tumour growth in intrasplenic tumours and liver metastasis induced by injection of HT-29 cells in nude mice spleen. NMR Biomed 11:93–106

    Article  PubMed  CAS  Google Scholar 

  63. Giskeødegård GF, Grinde MT, Sitter B, Axelson DE, Lundgren S, Fjøsne HE, Dahl S, Gribbestad IS, Bathen TF (2010) Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res 9(2):972–979

    Article  PubMed  Google Scholar 

  64. Yang Y, Li C, Nie X, Feng X, Chen W, Yue Y, Tang H, Deng F (2007) Metabolomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteome Res 6:2605–2614

    Article  PubMed  CAS  Google Scholar 

  65. Wen H, Yoo SS, Kang J, et al (2010) A new NMR-based metabolomics approach for the diagnosis of biliary tract cancer. J Hepatol 52(2):228–233

    Google Scholar 

  66. Kim YS, Maruvada P, Milner JA (2008) Metabolomics in biomarker discovery: future uses for cancer prevention. Future Oncol 4:93–102

    Article  PubMed  CAS  Google Scholar 

  67. Sasano H, Suzuki T, Nakata T, Moriya T (2006) New development in intracrinology of breast carcinoma. Breast Cancer 13:129–136

    Article  PubMed  Google Scholar 

  68. Ichikawa W (2006) Prediction of clinical outcome of fluoropyrimidine-based chemotherapy for gastric cancer patients, in terms of the 5-fluorouracil metabolic pathway. Gastric Cancer 9:145–155

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially sponsored by the Shanghai Rising-Star Program (No. 11QA1404800), the Grants from the National Natural Science Foundation of China (No. 81001069), and the National 863 High Technology Foundation (No. 2009AA02Z118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanlei Ma or Huanlong Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Zhang, P., Yang, Y. et al. Metabolomics in the fields of oncology: a review of recent research. Mol Biol Rep 39, 7505–7511 (2012). https://doi.org/10.1007/s11033-012-1584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1584-1

Keywords

Navigation