Skip to main content
Log in

Characterization and expression analysis of prohibitin in the testis of Chinese mitten crab Eriocheir sinensis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Prohibitin plays a key role in maintaining mitochondrial membrane integrity and retaining its normal function. We have initially cloned and sequenced the cDNA of prohibitin from testis of the crab Eriocheir sinensis. The 1,357 bp Prohibitin cDNA comprises a 105 bp 5′ untranslated region, a 427 bp 3′ untranslated region and a 825 bp open reading frame. Protein alignment substantiates that the Prohibitin has 70.2, 69.8, 70.5, 70.9, 72.4, 70.6 and 74.9% identity with its homologues in Mus musculus, Homo sapiens, Gallus gallus, Danio rerio, Xenopus tropicalis, Drosophila mojavensis and Aedes aegypti, respectively. In situ hybridization revealed that the Prohibitin mRNA was mainly localized around the proacrosomal vesicle and nucleus membrane in early-stage spermatid. In the following middle stage, Prohibitin mRNA was situated inside the invaginated region of half-moon-like nucleus and surrounded the proacrosomal vesicle. In late-stage spermatid, the mRNA was aggregated in the acrosomal tubule, the band between the acrosome and cup-like nucleus, remanent cytoplasm as well. In the mature sperm, mRNA was only found in the acrosomal tubule and the limited space between the nucleus and acrosome. Therefore, we presume that Prohibitin may fulfill critical functions in the spermiogenesis of Eriocheir sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tavernarakis N, Driscoll M, Kyrpides NC (1999) The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 24:425–427

    Article  PubMed  CAS  Google Scholar 

  2. Morrow IC, Parton RG (2005) Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 6:725–740

    Article  PubMed  CAS  Google Scholar 

  3. McClung JK, Jupe ER, Liu XT, Dell’Orco RT (1995) Prohibitin: potential role in senescence, development, and tumor suppression. Exp Gerontol 30:99–124

    Article  PubMed  CAS  Google Scholar 

  4. Jupe ER, Liu XT, Kiehlbauch JL, McClung JK, Dell’Orco RT (1995) Prohibitin antiproliferative activity and lack of heterozygosity in immortalized cell lines. Exp Cell Res 218:577–580

    Article  PubMed  CAS  Google Scholar 

  5. Thompson WE, Sanbuissho A, Lee GY, Anderson E (1997) Steroidogenic acute regulatory (StAR) protein (p25) and prohibitin (p28) from cultured rat ovarian granulosa cells. J Reprod Fertil 109:337–348

    Article  PubMed  CAS  Google Scholar 

  6. Nijtmans LGJ, Artal Sanz M, Grivell LA, Coates PJ (2002) The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell Mol Life Sci 59:143–155

    Article  PubMed  CAS  Google Scholar 

  7. Artal-Sanz M, Tsang WY, Willems EM, Grivell LA, Lemire BD, van der Spek H, Nijtmans LG, Sanz MA (2003) The mitochondrial prohibitin complex is essential for embryonic viability and germline function in Caenorhabditis elegans. J Biol Chem 278:32091–32099

    Article  PubMed  Google Scholar 

  8. Park SE, Xu J, Frolova A, Liao L, O’Malley BW, Katzenellenbogen BS (2005) Genetic deletion of the repressor of estrogen receptor activity (REA) enhances the response to estrogen in target tissues in vivo. Mol Cell Biol 25:1989–1999

    Article  PubMed  CAS  Google Scholar 

  9. He B, Feng Q, Mukherjee A, Lonard DM, DeMayo FJ, Katzenellenbogen BS, Lydon JP, O’Malley BW (2008) A repressive role for prohibitin in estrogen signaling. Mol Endocrinol 22:344–360

    Article  PubMed  CAS  Google Scholar 

  10. Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, Wunderlich FT, von Kleist-Retzow JC, Waisman A, Westermann B, Langer T (2008) Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22:476–488

    Article  PubMed  CAS  Google Scholar 

  11. Merkwirth C, Langer T (2009) Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 1793:27–32

    Article  PubMed  CAS  Google Scholar 

  12. Osman C, Merkwirth C, Langer T (2009) Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 122:3823–3830

    Article  PubMed  CAS  Google Scholar 

  13. Ikonen E, Fiedler K, Parton RG, Simons K (1995) Prohibitin, an antiproliferative protein, is localized to mitochondria. FEBS Lett 358:273–277

    Article  PubMed  CAS  Google Scholar 

  14. Snedden WA, Fromm H (1997) Characterization of the plant homologue of prohibitin, a gene associated with antiproliferative activity in mammalian cells. Plant Mol Biol 33:753–756

    Article  PubMed  CAS  Google Scholar 

  15. Coates PJ, Jamieson DJ, Smart K, Prescott AR, Hall PA (1997) The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr Biol 7:607–610

    Article  PubMed  CAS  Google Scholar 

  16. Berger KH, Yaffe MP (1998) Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol Cell Biol 18:4043–4052

    PubMed  CAS  Google Scholar 

  17. Steglich G, Neupert W, Langer T (1999) Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol Cell Biol 19:3435–3442

    PubMed  CAS  Google Scholar 

  18. Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW, Muijsers AO, van der Spek H, Grivell LA (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19:2444–2451

    Article  PubMed  CAS  Google Scholar 

  19. Kasashima K, Ohta E, Kagawa Y, Endo H (2006) Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. J Biol Chem 281:36401–36410

    Article  PubMed  CAS  Google Scholar 

  20. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    Article  PubMed  CAS  Google Scholar 

  21. Wang Y, Bogenhagen DF (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281:25791–25802

    Article  PubMed  CAS  Google Scholar 

  22. Bogenhagen DF, Rousseau D, Burke S (2008) The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283:3665–3675

    Article  PubMed  CAS  Google Scholar 

  23. Kasashima K, Sumitani M, Satoh M, Endo H (2008) Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp Cell Res 314:988–996

    Article  PubMed  CAS  Google Scholar 

  24. Artal-Sanz M, Tavernarakis N (2009) Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans. Nature 461:793–799

    Article  PubMed  CAS  Google Scholar 

  25. Choongkittaworn NM, Kim KH, Danner DB, Griswold MD (1993) Expression of prohibitin in rat seminiferous epithelium. Biol Reprod 49:300–310

    Article  PubMed  CAS  Google Scholar 

  26. Thompson WE, Ramalho-Santos J, Sutovsky P (2003) Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 69:254–260

    Article  PubMed  CAS  Google Scholar 

  27. Du NS, Xue LZ, Lai W (1988) Studies on the sperm of Chinese mitten-handed crab, Eriocheir sinensis (Crustacea, Decapoda). II. Spermatogenesis. Oceanol Limnol Sin 19:71–75

    Google Scholar 

  28. Wang L, Du NS, Lai W (1999) Studies on spermiogenesis of a freshwater crab Sinopotamon yangtsekiense (Crustacea, Decapoda). Acta Hydrobiol Sinica 23:29–35

    Google Scholar 

  29. Du NS, Lai W, Xue LZ (1987) Studies on the sperm of Chinese mitten-handed crab, Eriocheir sinensis (Crustacea, Decapoda). I. The morphology and ultrastructure of mature sperm. Oceanol Limnol Sin 18:119–125

    Google Scholar 

  30. Yu KM, Hou L, Zhu JQ, Ying XP, Yang WX (2009) KIFC1 participates in acrosomal biogenesis, with discussion of its importance for the perforatorium in the Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 337:113–123

    Article  PubMed  CAS  Google Scholar 

  31. Wang DH, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (es-KIFC1) in the testis of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 157:123–131

    Article  PubMed  Google Scholar 

  32. Sun X, He Y, Hou L, Yang WX (2010) Myosin Va participates in acrosomal formation and nuclear morphogenesis during spermatogenesis of Chinese mitten crab Eriocheir sinensis. PLoS ONE 5:e12738

    Article  PubMed  Google Scholar 

  33. Du NS (1998) Fertilization of Chinese mitten crab. Fish Sci Technol Inf 25:9–13

    Google Scholar 

  34. Fan LJ, Zhou ZL, Chen DH, Zhao YL, Wang Q (2007) Detection of sperm mitochondria in Chinese mitten crab, Eriocheir sinensis. J Fish China 14:139–143

    CAS  Google Scholar 

  35. Braissant O, Wahli W (1998) A simplified in situ hybridization protocol using non-radioactively labeled probes to detect abundant and rare mRNAs on tissue sections. Biochemica 1:10–16

    Google Scholar 

  36. Trifonov S, Houtani T, Hamada S, Kase M, Maruyama M, Sugimoto T (2009) In situ hybridization study of the distribution of choline acetyltransferase mRNA and its splice variants in the mouse brain and spinal cord. Neuroscience 159:344–357

    Article  PubMed  CAS  Google Scholar 

  37. Mishra S, Murphy LC, Murphy LJ (2006) The prohibitins: emerging roles in diverse functions. J Cell Mol Med 10:353–363

    Article  PubMed  CAS  Google Scholar 

  38. Back JW, Sanz MA, De Jong L, De Koning LJ, Nijtmans LG, De Koster CG, Grivell LA, Van Der Spek H, Muijsers AO (2002) A structure for the yeast prohibitin complex: structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Sci 11:2471–2478

    Article  PubMed  CAS  Google Scholar 

  39. Tatsuta T, Model K, Langer T (2005) Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16:248–259

    Article  PubMed  CAS  Google Scholar 

  40. Rivera-Milla E, Stuermer CA, Malaga-Trillo E (2006) Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci 63:343–357

    Article  PubMed  CAS  Google Scholar 

  41. Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17:394–402

    Article  PubMed  CAS  Google Scholar 

  42. Coates PJ, Nenutil R, McGregor A, Picksley SM, Crouch DH, Hall PA, Wright EG (2001) Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp Cell Res 265:262–273

    Article  PubMed  CAS  Google Scholar 

  43. Clavero-Salas A, Sotelo-Mundo RR, Gollas-Galván T, Hernández-López J, Peregrino-Uriarte AB, Muhlia-Almazán A, Yepiz-Plascencia G (2007) Transcriptome analysis of gills from the white shrimp Litopenaeus vannamei infected with White Spot Syndrome Virus. Fish Shellfish Immunol 23:459–472

    Article  PubMed  CAS  Google Scholar 

  44. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  45. Goldman SJ, Taylor R, Zhang Y, Jin S (2010) Autophagy and the degradation of mitochondria. Mitochondrion 10:309–315

    Article  PubMed  CAS  Google Scholar 

  46. Wang S, Fusaro G, Padmanabhan J, Chellappan SP (2002) Prohibitin colocalizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 21:8388–8396

    Article  PubMed  CAS  Google Scholar 

  47. Kurtev V, Margueron R, Kroboth K, Ogris E, Cavailles V, Seiser C (2004) Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem 279:24834–24843

    Article  PubMed  CAS  Google Scholar 

  48. Takata H, Matsunaga S, Morimoto A, Ma N, Kurihara D, Ono-Maniwa R, Nakagawa M, Azuma T, Uchiyama S, Fukui K (2007) PHB2 protects sister-chromatid cohesion in mitosis. Curr Biol 17:1356–1361

    Article  PubMed  CAS  Google Scholar 

  49. Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (2000) Ubiquitinated sperm mitochondria, selective proteolysis and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 63:582–590

    Article  PubMed  CAS  Google Scholar 

  50. Perreault SD, Wolf RA, Zirkin BR (1984) The role of disulfide bond reduction during mammalian sperm nuclear decondensation in vivo. Dev Biol 101:160–167

    Article  PubMed  CAS  Google Scholar 

  51. Sutovsky P, Schatten G (1997) Depletion of glutathione during oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol Reprod 56:1503–1512

    Article  PubMed  CAS  Google Scholar 

  52. Miranda-Vizuete A, Ljung J, Damdimopoulos AE, Gustafsson JA, Oko R, Pelto-Huikko M, Spyrou G (2001) Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem 276:31567–31574

    Article  PubMed  CAS  Google Scholar 

  53. Bebington C, Doherty FJ, Fleming SD (2001) The possible biological and reproductive functions of ubiquitin. Hum Reprod Update 7:102–111

    Article  PubMed  CAS  Google Scholar 

  54. Sutovsky P, Navara CS, Schatten G (1996) The fate of the sperm mitochondria and the incorporation, conversion and disassembly of the sperm tail structures during bovine fertilization in vitro. Biol Reprod 55:1195–1205

    Article  PubMed  CAS  Google Scholar 

  55. Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372

    Article  PubMed  CAS  Google Scholar 

  56. Sutovsky P (2003) Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech 61:88–102

    Article  PubMed  CAS  Google Scholar 

  57. Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31

    Article  PubMed  CAS  Google Scholar 

  58. Du NS, Lai W, Xue LZ (1987) Acrosome reaction of the sperm in the Chinese mitten-handed crab, Eriocheir sinensis (Crustacea, Decapoda). Acta Zool Sinica 33:8–13

    Google Scholar 

Download references

Acknowledgments

We are indebted to all members of the Sperm Laboratory at Zhejiang University for their enlightening discussion. This project was supported in part by National Natural Science Foundation of China (No. 31072198 and 40776079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1502 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, H., Wang, DH., Zhou, H. et al. Characterization and expression analysis of prohibitin in the testis of Chinese mitten crab Eriocheir sinensis . Mol Biol Rep 39, 7031–7039 (2012). https://doi.org/10.1007/s11033-012-1534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1534-y

Keywords

Navigation