Skip to main content
Log in

Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A MADS box gene AGL20/SOC1 is a main integrator in Arabidopsis flowering pathway whose structure and function are highly conserved in many plant species. A soybean MADS box gene GmGAL1 (G lycine max A GAMOUS L ike 1) as a homolog of AGL20/SOC1, was cloned from soybean cultivar Kennong18 and its function was investigated in transgenic Arabidopsis lines. Sequence comparisons showed that the closest homolog gene to GmGAL1 is AGL20/SOC1 in Arabidopsis and VuSOC1 in Vigna unguiculata. We investigated the expression level of GmGAL1 using quantitative real-time PCR, and the result showed that GmGAL1 was regulated by a circadian mechanism and its expression oscillated at a cycle of 24 h. The expression level of GmGAL1 was fluctuated in diverse tissues/organs and developmental stages. Considering its expression can be detected in different tissues throughout the life cycle and its protein localized in cytoplasm in Arabidopsis protoplasm, we proposed that GmGAL1 may be a multifunctional gene in the context of the soybean development. Ectopic expression of GmGAL1 in Arabidopsis enhanced flowering under long-day condition and partially rescued soc1 late flowering type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bodt DS, Raes J, Van de Peer Y, Theissen G (2003) And then there were many: MADS goes genomic. Trends Plant Sci 8:475–483

    Article  PubMed  Google Scholar 

  2. Foo E, Ross JJ, Davies NW, Reid JB, Weller JL (2006) A role for ethylene in the phytochrome-mediated control of vegetative development. Plant J 46:911–921

    Article  PubMed  CAS  Google Scholar 

  3. Irish V (2003) The evolution of floral homeotic gene function. Bioessays 25:637–646

    Article  PubMed  CAS  Google Scholar 

  4. Kater M, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57:3433–3444

    Article  PubMed  CAS  Google Scholar 

  5. Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21

    Article  PubMed  CAS  Google Scholar 

  6. Rijpkema A, Gerats T, Vandenbussche M (2007) Evolutionary complexity of MADS complexes. Curr Opin Plant Biol 10:32–38

    Article  PubMed  CAS  Google Scholar 

  7. Robles P, Pelaz S (2005) Flower and fruit development in Arabidopsis thaliana. Int J Dev Biol 49:33–43

    Article  Google Scholar 

  8. Saedler H, Huijser P (1993) Molecular biology of flower development in Antirrhinum majus (snapdragon). Gene 135:239–243

    Article  PubMed  CAS  Google Scholar 

  9. Hepworth S, Valverde Ravenscroft FD, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337

    Article  PubMed  CAS  Google Scholar 

  10. Poduska B, Humphrey T, Redweik A, Grbic V (2003) The synergistic activation of FLOWERING LOCUS C by FRIGIDA and a new flowering gene AERIAL ROSETTE 1 underlies a novel morphology in Arabidopsis. Genetics 163:1457–1465

    PubMed  CAS  Google Scholar 

  11. Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES (2002) FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant J 29:183–191

    Article  PubMed  CAS  Google Scholar 

  12. Swarup K, Alonso-Blanco C, Lynn JR, Michaels SD, Amasino RM, Koornneef M, Millar AJ (1999) Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J 20:67–77

    Article  PubMed  CAS  Google Scholar 

  13. Sessions A, Yanofsky MF, Weigel D (2000) Cell–cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289:779–782

    Article  PubMed  CAS  Google Scholar 

  14. Wagner D, Sablowski RWM, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–584

    Article  PubMed  CAS  Google Scholar 

  15. Tapia-López R, García-Ponce B, Dubrovsky JG, Garay-Arroyo A, Pérez-Ruíz RV, Kim SH, Acevedo F, Pelaz S, Alvarez-Buylla ER (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 46:1182–1192

    Article  Google Scholar 

  16. Kim S, Kim SR, An CS, Hong YN, Lee KW (2001) Constitutive expression of rice MADS box gene using seed explants in hot pepper (Capsicum annuum L.). Mol Cells 12:221–226

    PubMed  CAS  Google Scholar 

  17. Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764

    Article  PubMed  CAS  Google Scholar 

  18. Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  PubMed  CAS  Google Scholar 

  19. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  20. Sheldon C, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458

    Article  PubMed  CAS  Google Scholar 

  21. Borner R, Kampmann G, Chandler J, Gleibner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:519–599

    Article  Google Scholar 

  22. Lee Jungeun LI (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  PubMed  CAS  Google Scholar 

  23. Liu C, Xi WY, Shen LS, Tan CP, Yu H (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16:711–722

    Article  PubMed  CAS  Google Scholar 

  24. Decroocq V, Zhu XM, Kauffman M, Kyozuka J, Peacock WJ, Dennis ES, Llewellyn DJ (1999) A TM3-like MADS-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene 228:155–160

    Article  PubMed  CAS  Google Scholar 

  25. Tadege M, Sheldon CC, Helliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ (2003) Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnol J1:361–369

    Article  Google Scholar 

  26. Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lorz H, Dresselhaus T (2001) The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol 127:33–45

    Article  PubMed  CAS  Google Scholar 

  27. Nakamura T, Song IJ, Fukuda T, Yokoyama J, Maki M, Ochiai T, Kameya T, Kanno A (2005) Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family. J Plant Res 118:229–234

    Article  PubMed  CAS  Google Scholar 

  28. Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RG (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaflike characteristics to floral organs in a dominant-negative manner. Plant Cell 16:1490–1505

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Q, Li HY, Li R, Hu RB, Fan CM, Chen FL, Wang ZH, Liu Xu, Fu YF, Lin CT (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA 105:21028–21033

    Article  PubMed  CAS  Google Scholar 

  30. Xu JH, Zhong XF, Zhang QZ, Li HY (2010) Overexpression of the GmGAL2 gene accelerates flowering in Arabidopsis. Plant Mol Biol Rep 28:704–711

    Article  CAS  Google Scholar 

  31. Steven J, Andrew FB (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  Google Scholar 

  32. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492

    Article  PubMed  CAS  Google Scholar 

  33. Cseke LJZJ, Podila GK (2003) Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55–67

    Article  PubMed  CAS  Google Scholar 

  34. Tan F, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plantarum 131:481–495

    Article  CAS  Google Scholar 

  35. Liu H, Wang HG, Gao PF, Xv JH, Xv TD, Wang JS, Wang BL, Lin CT, Fu YF (2009) Analysis of clock gene homologs using unifolioates as target organs in soybean (Glyciine max). J Plant Physiol 166:278–289

    Article  PubMed  CAS  Google Scholar 

  36. Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM (2009) CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. Plant Physiol 150:834–843

    Article  PubMed  CAS  Google Scholar 

  37. Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55:832–843

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Chinese national “863” Program (2006AA10Z107), Ministry of Agriculture, major projects transgenic (2009ZX08004-010B) and the National Natural Science Foundation of China (Grant No. 31171352).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Liu or Hongyu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, X., Dai, X., Xv, J. et al. Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean. Mol Biol Rep 39, 6967–6974 (2012). https://doi.org/10.1007/s11033-012-1524-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1524-0

Keywords

Navigation