Skip to main content
Log in

Pyrosequencing of a short fragment of the amelogenin gene for gender identification

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We report a pyrosequencing method for detecting a short amelogenin fragment to aid the gender identification. The PCR products (44/45 bp), including primers and target sequence (4/5 bp) consisting of three point mutations and one indel mutation, were sequenced by the pyrosequencing method. 100 randomly chosen DNA samples of healthy donors were analyzed with this method, and all of them were correctly typed. The sensitivity of the technique was 0.5 ng template DNA. No specific peak was found in any detected animals or organisms except for monkey. For blood samples that were left outside for 26 weeks and DNA degraded artificially by digesting with DNaseI, this method gave more accurate results than the conventional method. Moreover, four bone samples analyzed using the method gave clear pyrograph. This method is easy, quick, cheap and suitable for high-throughput analysis, especially for identifying the gender of highly-degraded DNA samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

SNP:

Single nucleotide polymorphism

STR:

Short tandem repeats

AMEL:

Amelogenin

References

  1. von Wurmb-Schwark N, Bosinski H, Ritz-Timme S (2007) What do the X and Y chromosomes tell us about sex and gender in forensic case analysis? J Forensic Leg Med 14(1):27–30

    Article  Google Scholar 

  2. Birch L, English CA, O’Donoghue K, Barigye O, Fisk NM, Keer JT (2005) Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin Chem 51(2):312–320

    Article  PubMed  CAS  Google Scholar 

  3. Honda H, Miharu N, Ohashi Y, Ohama K (2001) Successful diagnosis of fetal gender using conventional PCR analysis of maternal serum. Clin Chem 47(1):41–46

    PubMed  CAS  Google Scholar 

  4. Robinson DO, Dalton P, Jacobs PA, Mosse K, Power MM, Skuse DH, Crolla JA (1999) A molecular and FISH analysis of structurally abnormal Y chromosomes in patients with Turner syndrome. J Med Genet 36(4):279–284

    PubMed  CAS  Google Scholar 

  5. Tyler MG, Kirby LT, Wood S, Vernon S, Ferris JA (1986) Human blood stain identification and sex determination in dried blood stains using recombinant DNA techniques. Forensic Sci Int 31(4):267–272

    Article  PubMed  CAS  Google Scholar 

  6. Reynolds R, Varlaro J (1996) Gender determination of forensic samples using PCR amplification of ZFX/ZFY gene sequences. J Forensic Sci 41(2):279–286

    PubMed  CAS  Google Scholar 

  7. Nakahori Y, Hamano K, Iwaya M, Nakagome Y (1991) Sex identification by polymerase chain reaction using X-Y homologous primer. Am J Med Genet 39(4):472–473. doi:10.1002/ajmg.1320390420

    Article  PubMed  CAS  Google Scholar 

  8. Akane A, Seki S, Shiono H, Nakamura H, Hasegawa M, Kagawa M, Matsubara K, Nakahori Y, Nagafuchi S, Nakagome Y (1992) Sex determination of forensic samples by dual PCR amplification of an X-Y homologous gene. Forensic Sci Int 52(2):143–148

    Google Scholar 

  9. Sullivan KM, Mannucci A, Kimpton CP, Gill P (1993) A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15(4):636–638; 640–641

    Google Scholar 

  10. Tschentscher F, Frey UH, Bajanowski T (2008) Amelogenin sex determination by pyrosequencing of short PCR products. Int J Legal Med 122(4):333–335. doi:10.1007/s00414-008-0228-4

    Article  PubMed  Google Scholar 

  11. Maciejewska A, Pawlowski R (2009) A rare mutation in the primer binding region of the Amelogenin X homologue gene. Forensic Sci Int Genet 3(4):265–267

    Article  PubMed  CAS  Google Scholar 

  12. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55(5):856–866

    Article  PubMed  CAS  Google Scholar 

  13. Bickmann JK, Kamin W, Wiebel M, Hauser F, Wenzel JJ, Neukirch C, Stuhrmann M, Lackner KJ, Rossmann H (2009) A novel approach to CFTR mutation testing by pyrosequencing-based assay panels adapted to ethnicities. Clin Chem 55(6):1083–1091

    Article  PubMed  CAS  Google Scholar 

  14. Pati N, Schowinsky V, Kokanovic O, Magnuson V, Ghosh S (2004) A comparison between SNaPshot, pyrosequencing, and biplex invader SNP genotyping methods: accuracy, cost, and throughput. J Biochem Biophys Methods 60(1):1–12. doi:10.1016/j.jbbm.2003.11.005

    Article  PubMed  CAS  Google Scholar 

  15. Karlsson AO, Holmlund G (2007) Identification of mammal species using species-specific DNA pyrosequencing. Forensic Sci Int 173(1):16–20

    Article  PubMed  CAS  Google Scholar 

  16. Castaldo I, Pinelli M, Monticelli A, Acquaviva F, Giacchetti M, Filla A, Sacchetti S, Keller S, Avvedimento VE, Chiariotti L, Cocozza S (2008) DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich ataxia patients. J Med Genet 45(12):808–812

    Article  PubMed  CAS  Google Scholar 

  17. Ensenberger MG, Thompson J, Hill B, Homick K, Kearney V, Mayntz-Press KA, Mazur P, McGuckian A, Myers J, Raley K, Raley SG, Rothove R, Wilson J, Wieczorek D, Fulmer PM, Storts DR, Krenke BE (2010) Developmental validation of the PowerPlex 16 HS System: an improved 16-locus fluorescent STR multiplex. Forensic Sci Int Genet 4(4):257–264

    Article  PubMed  CAS  Google Scholar 

  18. Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48(5):1054–1064

    PubMed  CAS  Google Scholar 

  19. Chung DT, Drabek J, Opel KL, Butler JM, McCord BR (2004) A study on the effects of degradation and template concentration on the amplification efficiency of the STR Miniplex primer sets. J Forensic Sci 49(4):733–740

    Article  PubMed  CAS  Google Scholar 

  20. Gibbon V, Paximadis M, Strkalj G, Ruff P, Penny C (2009) Novel methods of molecular sex identification from skeletal tissue using the amelogenin gene. Forensic Sci Int Genet 3(2):74–79

    Article  PubMed  CAS  Google Scholar 

  21. Fondevila M, Phillips C, Naveran N, Fernandez L, Cerezo M, Salas A, Carracedo A, Lareu MV (2008) Case report: identification of skeletal remains using short-amplicon marker analysis of severely degraded DNA extracted from a decomposed and charred femur. Forensic Sci Int Genet 2(3):212–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lei Zhao, Xue Bai for their support on bone DNA extraction techniques, and Bangxian Dou, Jixing Zhu for their support on Bone samples supply. This study was supported by National Natural Science Foundation of China (30973364) and Natural Science Foundation of Hebei Province (C2010000459).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cong.

Additional information

Shujin Li and Ting Feng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Feng, T., Fu, L. et al. Pyrosequencing of a short fragment of the amelogenin gene for gender identification. Mol Biol Rep 39, 6949–6957 (2012). https://doi.org/10.1007/s11033-012-1522-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1522-2

Keywords

Navigation