Skip to main content
Log in

DNA microarray analysis reveals differential gene expression in the soleus muscle between male and female rats exposed to a high fat diet

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

It is well recognized that diet-induced dysfunctions in skeletal muscle are closely related with many metabolic diseases, such as obesity and diabetes. In the present study, we identified global changes in gender-dependent gene expressions in the soleus muscle of lean and obese rats fed a high fat diet (HFD), using DNA microarray analysis. Prior to microarray analysis, the body weight gains were found to be higher in male HFD rats than the female HFD rats. To better understand the detailed phenotypic differences in response to HFD feeding, we identified differential gene expression in soleus muscle between the genders. To this end, we extracted and summarized the genes that were up- or down-regulated more than 1.5-fold between the genders in the microarray data. As expected, a greater number of genes encoding myofibrillar proteins and glycolytic proteins were expressed higher in males than females when exposed to HFD, reflecting greater muscular activity and higher capacity for utilizing glucose as an energy fuel. However, a series of genes involved in oxidative metabolism and cellular defenses were more up-regulated in females than males. These results allowed us to conclude that compared to males, females have greater fat clearing capacity in skeletal muscle through the activation of genes encoding enzymes for fat oxidation. In conclusion, our microarray data provide a better understanding of the molecular events underlying gender dimorphism in soleus muscle, and will provide valuable information in improving gender awareness in the health care system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Abcd2 :

ATP-binding cassette sub-family D member 2

Actg2 :

Smooth muscle γ-actin

Ak3l1 :

Adenylate kinase isoenzyme 4, mitochondrial

Angptl4 :

Angiopoietin-related protein 4

Atp :

ATP synthease

Col1a1 :

Collagen, type I, α-1

Eno3 :

β-Enolase

Gstm5 :

Glutathione S-transferase μ 5

HFD:

High-fat diet

Il15 :

Interleukin 5

Myh :

Myosin heavy chain

ND:

Normal diet

Per2 :

Period circadian protein homolog 2

Ppargc1a :

Peroxisome proliferator-activated receptors gamma coactivator 1-α

Pfkp :

Phosphofructokinase, platelet

Pvalb :

Parvalbumin

RT1-A1 :

RT1 class Ia, locus A1

Slc25 :

Solute carrier family 25 (carnitine/acylcarnitine translocase)

Tnni2 :

Troponin I type 2

Tpm1 :

Tropomyosin α-1 chain

References

  1. Perseghin G (2005) Muscle lipid metabolism in the metabolic syndrome. Curr Opin Lipidol 16:416–420. doi:10.1097/01.mol.0000174401.07056.56

    Article  PubMed  CAS  Google Scholar 

  2. Desaki J, Nishida N (2011) Fine structural study of the regeneration of muscle fibers in the rat soleus muscle during aging. J Electron Microsc 60:191–200. doi:10.1093/jmicro/dfr003

    Article  Google Scholar 

  3. Iossa S, Mollica MP, Lionetti L, Crescenzo R, Botta M, Liverini G (2002) Skeletal muscle oxidative capacity in rats fed high-fat diet. Int J Obes Relat Metab Disord 26:65–72. doi:10.1038/sj.ijo.0801844

    Article  PubMed  CAS  Google Scholar 

  4. Sreekumar R, Unnikrishnan J, Fu A, Nygren J, Short KR, Schimke J, Barazzoni R, Nair KS (2002) Impact of high-fat diet and antioxidant supplement on mitochondrial functions and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab 282:E1055–E1061. doi:10.1152/ajpendo.00554.2001

    PubMed  CAS  Google Scholar 

  5. Sreekumar R, Unnikrishnan J, Fu A, Nygren J, Short KR, Schimke J, Barazzoni R, Nair KS (2002) Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab 283:E38–E43. doi:10.1152/ajpendo.00387.2001

    PubMed  CAS  Google Scholar 

  6. Ayre KJ, Hulbert AJ (1996) Effects of changes in dietary fatty acids on isolated skeletal muscle functions in rats. J Appl Physiol 80:464–471

    Article  PubMed  CAS  Google Scholar 

  7. Matsakas A, Patel K (2009) Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli. Histol Histopathol 24:611–629

    PubMed  Google Scholar 

  8. Kim DH, Joo JI, Choi JW, Yun JW (2010) Differential expression of skeletal muscle proteins in high-fat diet-fed rats in response to capsaicin feeding. Proteomics 10:2870–2881. doi:10.1002/pmic.200900815

    Article  PubMed  CAS  Google Scholar 

  9. Kim DH, Choi JW, Joo JI, Wang X, Choi DK, Oh TS, Yun JW (2011) Changes in expression of skeletal muscle proteins between obesity-prone and obesity-resistant rats induced by a high-fat diet. J Proteome Res 10:1281–1292. doi:10.1021/pr101048q

    Article  PubMed  CAS  Google Scholar 

  10. Panchal SK, Brown L (2011) Rodent models for metabolic syndrome research. J Biomed Biotechnol 2011:351982. doi:10.1155/2011/351982

    Article  PubMed  Google Scholar 

  11. Steinberg D (1991) Antioxidants and atherosclerosis. A current assessment. Circulation 84:1420–1425

    PubMed  CAS  Google Scholar 

  12. Hansen PA, Han DH, Marshall BA, Nolte LA, Chen MM, Mueckler M, Holloszy JO (1998) A high fat diet impairs stimulation of glucose transport in muscle. Functional evaluation of potential mechanisms. J Biol Chem 273:26157–26163

    Article  PubMed  CAS  Google Scholar 

  13. Storlien LH, James DE, Burleigh KM, Chisholm DJ, Kraegen EW (1986) Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol 251:E576–E583

    PubMed  CAS  Google Scholar 

  14. Pan DA, Storlien LH (1993) Dietary lipid profile is a determinant of tissue phospholipid fatty acid composition and rate of weight gain in rats. J Nutr 123:512–519

    PubMed  CAS  Google Scholar 

  15. Storlien LH, Pan DA, Kriketos AD, Baur LA (1993) High fat diet-induced insulin resistance. Lessons and implications from animal studies. Ann N Y Acad Sci 683:82–90

    Article  PubMed  CAS  Google Scholar 

  16. Tarnopolsky MA (2000) Gender differences in metabolism; nutrition and supplements. J Sci Med Sport 3:287–298. doi:10.1016/S1440-2440(00)80038-9

    Article  PubMed  CAS  Google Scholar 

  17. Lamont LS (2005) Gender differences in amino acid use during endurance exercise. Nutr Rev 63:419–422. doi:10.1301/nr.2005.dec.419-422

    Article  PubMed  Google Scholar 

  18. Power ML, Schulkin J (2008) Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. Br J Nutr 99:931–940. doi:10.1017/S0007114507853347

    Article  PubMed  CAS  Google Scholar 

  19. Arciero PJ, Goran MI, Poehlman ET (1993) Resting metabolic rate is lower in women than in men. J Appl Physiol 75:2514–2520

    PubMed  CAS  Google Scholar 

  20. Henderson GC, Fattor JA, Horning MA, Faghihnia N, Johnson ML, Luke-Zeitoun M, Brooks GA (2008) Glucoregulation is more precise in women than in men during postexercise recovery. Am J Clin Nutr 87:1686–1694

    PubMed  CAS  Google Scholar 

  21. Allan CA, Strauss BJ, Burger HG, Forbes EA, McLachlan RI (2008) Testosterone therapy prevents gain in visceral adipose tissue and loss of skeletal muscle in nonobese aging men. J Clin Endocrinol Metab 93:139–146. doi:10.1210/jc.2007-1291

    Article  PubMed  CAS  Google Scholar 

  22. Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y (2000) Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2. Endocrinology 141:649–656

    Article  PubMed  CAS  Google Scholar 

  23. Meseguer A, Puche C, Cabero A (2002) Sex steroid biosynthesis in white adipose tissue. Horm Metab Res 34:731–736. doi:10.1055/s-2002-38249

    Article  PubMed  CAS  Google Scholar 

  24. Kautzky-Willer A, Handisurya A (2009) Metabolic diseases and associated complications: sex and gender matter! Eur J Clin Invest 39:631–648. doi:10.1111/j.1365-2362.2009.02161.x

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez AM, Palou A (2004) Uncoupling proteins: gender dependence and their relation to body weight control. Int J Obes Relat Metab Disord 28:500–502. doi:10.1038/sj.ijo.0802588

    Article  PubMed  CAS  Google Scholar 

  26. Levadoux E, Morio B, Montaurier C, Puissant V, Boirie Y, Fellmann N, Picard B, Rousset P, Beaufrere B, Ritz P (2001) Reduced whole-body fat oxidation in women and in the elderly. Int J Obes Relat Metab Disord 25:39–44. doi:10.1038/sj.ijo.0801530

    Article  PubMed  CAS  Google Scholar 

  27. Macotela Y, Boucher J, Tran TT, Kahn CR (2009) Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58:803–812. doi:10.2337/db08-1054

    Article  PubMed  CAS  Google Scholar 

  28. Wang GJ, Volkow ND, Telang F, Jayne M, Ma Y, Pradhan K, Zhu W, Wong CT, Thanos PK, Geliebter A, Biegon A, Fowler JS (2009) Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation. Proc Natl Acad Sci USA 106:1249–1254. doi:10.1073/pnas.0807423106

    Article  PubMed  CAS  Google Scholar 

  29. Klaus S, Keijer J (2004) Gene expression profiling of adipose tissue: individual, depot-dependent, and sex-dependent variabilities. Nutrition 20:115–120

    Article  PubMed  CAS  Google Scholar 

  30. Crul T, Testelmans D, Spruit MA, Troosters T, Gosselink R, Geeraerts I, Decramer M, Gayan-Ramirez G (2010) Gene expression profiling in vastus lateralis muscle during an acute exacerbation of COPD. Cell Physiol Biochem 25:491–500. doi:10.1159/000303054

    Article  PubMed  CAS  Google Scholar 

  31. Kim YJ, Park T (2008) Genes are differentially expressed in the epididymal fat of rats rendered obese by a high-fat diet. Nutr Res 28:414–422. doi:10.1016/j.nutres.2008.03.015

    Article  PubMed  CAS  Google Scholar 

  32. Carson JA, Nettleton D, Reecy JM (2002) Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J 16:207–209. doi:10.1096/fj.01-0544fje

    PubMed  CAS  Google Scholar 

  33. Wittwer M, Fluck M, Hoppeler H, Muller S, Desplanches D, Billeter R (2002) Prolonged unloading of rat soleus muscle causes distinct adaptations of the gene profile. FASEB J 16:884–886. doi:10.1096/fj.01-0792fje

    PubMed  CAS  Google Scholar 

  34. Ort T, Gerwien R, Lindborg KA, Diehl CJ, Lemieux AM, Eisen A, Henriksen EJ (2007) Alterations in soleus muscle gene expression associated with a metabolic endpoint following exercise training by lean and obese Zucker rats. Physiol Genomics 29:302–311. doi:10.1152/physiolgenomics.00257.2006

    Article  PubMed  CAS  Google Scholar 

  35. Komi PV, Karlsson J (1978) Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta Physiol Scand 103:210–218

    Article  PubMed  CAS  Google Scholar 

  36. Catala-Niell A, Estrany ME, Proenza AM, Gianotti M, Llado I (2008) Skeletal muscle and liver oxidative metabolism in response to a voluntary isocaloric intake of a high fat diet in male and female rats. Cell Physiol Biochem 22:327–336. doi:10.1159/000149811

    Article  PubMed  CAS  Google Scholar 

  37. Jain N, Thatte J, Braciale T, Ley K, O’Connell M, Lee JK (2003) Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 19:1945–1951. doi:10.1093/bioinformatics/btg264

    Article  PubMed  CAS  Google Scholar 

  38. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284. doi:10.1016/S0166-4328(01)00297-2

    Article  PubMed  CAS  Google Scholar 

  39. Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, Ladunga I, Ulitsky-Lazareva B, Muruganujan A, Rabkin S, Vandergriff JA, Doremieux O (2003) PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 31:334–341. doi:10.1093/nar/gkg115

    Article  PubMed  CAS  Google Scholar 

  40. Ross I, Gentleman R (1996) A language for data analysis and graphics. J Comput Graph Stat 5:229–314

    Google Scholar 

  41. Kim SW, Hwang HJ, Baek YM, Lee SH, Hwang HS, Yun JW (2008) Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatments. Proteomics 8:2344–2361. doi:10.1002/pmic.200700779

    Article  PubMed  CAS  Google Scholar 

  42. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP (2007) GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 23:3251–3253. doi:10.1093/bioinformatics/btm369

    Article  PubMed  CAS  Google Scholar 

  43. Moss RL, Razumova M, Fitzsimons DP (2004) Myosin crossbridge activation of cardiac thin filaments: implications for myocardial function in health and disease. Circ Res 94:1290–1300. doi:10.1161/01.RES.0000127125.61647.4F

    Article  PubMed  CAS  Google Scholar 

  44. de Wilde J, Mohren R, van den Berg S, Boekschoten M, Dijk KW, de Groot P, Muller M, Mariman E, Smit E (2008) Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice. Physiol Genomics 32:360–369. doi:10.1152/physiolgenomics.00219.2007

    PubMed  Google Scholar 

  45. Muntener M, Kaser L, Weber J, Berchtold MW (1995) Increase of skeletal muscle relaxation speed by direct injection of parvalbumin cDNA. Proc Natl Acad Sci USA 92:6504–6508

    Article  PubMed  CAS  Google Scholar 

  46. Lees JG, Bach CT, O’Neill GM (2011) Interior decoration: tropomyosin in actin dynamics and cell migration. Cell Adhes Migr 5:181–186. doi:10.4161/cam.5.2.14438

    Article  Google Scholar 

  47. Thomas A, Rajan S, Thurston HL, Masineni SN, Dube P, Bose A, Muthu V, Dube S, Wieczorek DF, Poiesz BJ, Dube DK (2010) Expression of a novel tropomyosin isoform in axolotl heart and skeletal muscle. J Cell Biochem 110:875–881. doi:10.1002/jcb.22599

    Article  PubMed  CAS  Google Scholar 

  48. Sun Q, Taurin S, Sethakorn N, Long X, Imamura M, Wang DZ, Zimmer WE, Dulin NO, Miano JM (2009) Myocardin-dependent activation of the CArG box-rich smooth muscle gamma-actin gene: preferential utilization of a single CArG element through functional association with the NKX3.1 homeodomain protein. J Biol Chem 284:32582–32590. doi:10.1074/jbc.M109.033910

    Article  PubMed  CAS  Google Scholar 

  49. Liu YJ, Liu XG, Wang L, Dina C, Yan H, Liu JF, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Meyre D, Delplanque J, Pei YF, Zhang L, Recker RR, Froguel P, Deng HW (2008) Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum Mol Genet 17:1803–1813. doi:10.1093/hmg/ddn072

    Article  PubMed  CAS  Google Scholar 

  50. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3:e115. doi:10.1371/journal.pgen.0030115

    Article  PubMed  Google Scholar 

  51. Nakajima H, Raben N, Hamaguchi T, Yamasaki T (2002) Phosphofructokinase deficiency; past, present and future. Curr Mol Med 2:197–212. doi:10.2174/1566524024605734

    Article  PubMed  CAS  Google Scholar 

  52. Wu AH, Perryman MB (1992) Clinical applications of muscle enzymes and proteins. Curr Opin Rheumatol 4:815–820

    PubMed  CAS  Google Scholar 

  53. Giallongo A, Venturella S, Oliva D, Barbieri G, Rubino P, Feo S (1993) Structural features of the human gene for muscle-specific enolase. Differential splicing in the 5′-untranslated sequence generates two forms of mRNA. Eur J Biochem 214:367–374

    Article  PubMed  CAS  Google Scholar 

  54. Matsuda H, Seo Y, Takahama K (2000) A novel method of species identification using human muscle-specific beta-enolase. Leg Med 2:42–45

    Article  CAS  Google Scholar 

  55. Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279:E1039–E1044

    PubMed  CAS  Google Scholar 

  56. Fourcade S, Ruiz M, Camps C, Schluter A, Houten SM, Mooyer PA, Pampols T, Dacremont G, Wanders RJ, Giros M, Pujol A (2009) A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am J Physiol Endocrinol Metab 296:211–221. doi:10.1152/ajpendo.90736.2008

    Article  Google Scholar 

  57. Indiveri C, Iacobazzi V, Giangregorio N, Palmieri F (1997) The mitochondrial carnitine carrier protein: cDNA cloning, primary structure and comparison with other mitochondrial transport proteins. Biochem J 321:713–719

    PubMed  CAS  Google Scholar 

  58. Indiveri C, Tonazzi A, Palmieri F (1990) Identification and purification of the carnitine carrier from rat liver mitochondria. Biochim Biophys Acta 1020:81–86. doi:10.1016/0005-2728(90)90096-M

    Article  PubMed  CAS  Google Scholar 

  59. Tachibana K, Takeuchi K, Inada H, Yamasaki D, Ishimoto K, Tanaka T, Hamakubo T, Sakai J, Kodama T, Doi T (2009) Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells. Biochem Biophys Res Commun 389:501–505. doi:10.1016/j.bbrc.2009.09.018

    Article  PubMed  CAS  Google Scholar 

  60. Rohas LM, St-Pierre J, Uldry M, Jager S, Handschin C, Spiegelman BM (2007) A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci USA 104:7933–7938. doi:10.1073/pnas.0702683104

    Article  PubMed  CAS  Google Scholar 

  61. Benton CR, Nickerson JG, Lally J, Han XX, Holloway GP, Glatz JF, Luiken JJ, Graham TE, Heikkila JJ, Bonen A (2008) Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. J Biol Chem 283:4228–4240. doi:10.1074/jbc.M704332200

    Article  PubMed  CAS  Google Scholar 

  62. Consitt LA, Bell JA, Koves TR, Muoio DM, Hulver MW, Haynie KR, Dohm GL, Houmard JA (2010) Peroxisome proliferator-activated receptor-gamma coactivator-1alpha overexpression increases lipid oxidation in myocytes from extremely obese individuals. Diabetes 59:1407–1415. doi:10.2337/db09-1704

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Daegu University Research Grant 2010. The authors extend their thanks to Dr. Young Ju Bae of Macrogen Inc. (Seoul, Korea) for her technical assistance in microarray analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, T.S., Yun, J.W. DNA microarray analysis reveals differential gene expression in the soleus muscle between male and female rats exposed to a high fat diet. Mol Biol Rep 39, 6569–6580 (2012). https://doi.org/10.1007/s11033-012-1486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1486-2

Keywords

Navigation