Skip to main content

Advertisement

Log in

Induction of toll-like receptor (TLR) 2, and MyD88-dependent TLR- signaling in response to ligand stimulation and bacterial infections in the Indian major carp, mrigal (Cirrhinus mrigala)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Toll-like receptor 2 (TLR2) is a member of TLR family. It recognizes a wide range of bacteria and their products, and is involved in inducing innate immune responses. In this article, we reported inductive expression of TLR2 and myeloid differentiation primary response gene 88 (MyD88)-dependent signaling in the Indian major carp, mrigal (Cirrhinus mrigala) which is highly commercially important fish species in the Indian subcontinent. Ontogeny analysis of TLR2, MyD88 and TRAF6 (TNF receptor associated factor 6) genes by quantitative real-time PCR (qRT-PCR) revealed constitutive expression of these genes in all embryonic developmental stages, indicating their involvement in embryonic innate immune defense system in fish. Tissue specific expression analysis of these genes by qRT-PCR showed their wide distribution in various organs and tissues. Highest expression of TLR2 was in gill, MyD88 in liver and TRAF6 was in kidney. Inductive expression of TLR2, MyD88 and TRAF6 genes were observed following peptidoglycan (PGN)-treatment, and Streptococcus uberis and Aeromonas hydrophila infections. Expression of interleukin (IL)-8 and TNF-α in various organs were significantly enhanced by PGN-treatment and bacterial infections, and were closely associated with TLR2 induction. These findings together highlighted the contribution of TLR2 in augmenting innate immunity in fish, and indicated it’s important role in immune surveillance of various organs during pathogenic invasion. This study will enrich the information in understanding the innate immune mechanism in fish, and will be helpful in developing preventive measures against infectious diseases in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  2. Magnadottir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151

    Article  PubMed  CAS  Google Scholar 

  3. Aoki T, Takano T, Santos MD et al (2008) Molecular innate immunity in Teleost fish: review and future perspectives. 5th World fisheries congress, pp 263–276

  4. Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  PubMed  CAS  Google Scholar 

  5. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  6. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  7. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  8. Akira S (2009) Pathogen recognition by innate immunity and its signaling. Proc Jpn Acad Ser B 85:143–156

    Article  CAS  Google Scholar 

  9. Buwitt-Beckmann U, Heine H, Wiesmuller KH et al (2006) TLR1- and TLR6-independent recognition of bacterial lipopeptides. J Biol Chem 281:9049–9057

    Article  PubMed  CAS  Google Scholar 

  10. Takeuchi O, Sato S, Horiuchi T et al (2002) Cutting edge: role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10–14

    PubMed  CAS  Google Scholar 

  11. Bell JK, Mullen GE, Leifer CA et al (2003) Leucine-rich repeats and pathogen recognition in toll-like receptors. Trends Immunol 24:528–533

    Article  PubMed  CAS  Google Scholar 

  12. Grockiego FD, Rabi K, Schmidt J et al (2007) Fatty acids isolated from Toxoplasma gondii reduce glycosylphosphatidylinositol-induced tumor necrosis factor alpha production through inhibition of the NF-κB signaling pathway. Inf Immunity 75:2886–2893

    Article  Google Scholar 

  13. Matsuguchi T, Takagi K, Musikacharoen T et al (2000) Gene expressions of lipopolysaccharide receptors, toll-like receptors 2 and 4, are differently regulated in mouse T lymphocytes. Blood 95:1378–1385

    PubMed  CAS  Google Scholar 

  14. Jault C, Pichon L, Chluba J (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40:759–771

    Article  PubMed  CAS  Google Scholar 

  15. Meijer AH, Gabby Krens SF, Medina Rodriguez IA et al (2004) Expression analysis of the toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 40:773–783

    Article  PubMed  CAS  Google Scholar 

  16. Hirono I, Takami M, Miyata M et al (2004) Characterization of gene structure and expression of two toll-like receptors from Japanese flounder, Paralichthys olivaceus. Immunogenetics 56:38–46

    Article  PubMed  CAS  Google Scholar 

  17. Oshiumi H, Tsujita T, Shida K et al (2003) Prediction of the prototype of the human toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54:791–800

    PubMed  CAS  Google Scholar 

  18. Baoprasertkul P, Peatman E, Abernathy J et al (2007) Structural characterization and expression analysis of toll-like receptor 2 gene from catfish. Fish Shellfish Immunol 22:418–426

    Article  PubMed  CAS  Google Scholar 

  19. Ribeiro CMS, Hermsen T, Taverne-Thiele AJ et al (2010) Evolution of recognition of ligands from Gram-positive bacteria: similarities and differences in the TLR2-mediated response between mammalian vertebrates and teleost fish. J Immunol 184:2355–2368

    Article  PubMed  CAS  Google Scholar 

  20. Li YW, Luo XC, Dan XM et al (2011) Orange-spotted grouper (Epinephelus coioides) TLR2, MyD88 and IL-1β involved in anti-Cryptocaryon irritans response. Fish Shellfish Immunol 30:1230–1240

    Article  PubMed  CAS  Google Scholar 

  21. Wei YC, Pan TS, Chang MX et al (2011) Cloning and expression of toll-like receptors 1 and 2 from a teleost fish, the orange-spotted grouper Epinephelus coioides. Vet Immunol Immunopathol 141:173–182

    Article  PubMed  CAS  Google Scholar 

  22. Quarterly Aquatic Animal Disease Report (Asia and Pacific Rigion) (2003) FAO, NACA

  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  24. Swain B, Samanta M, Basu M et al (2011) Molecular characterization, inductive expression and mechanism of interleukin-10 gene induction in the Indian major carp, catla (Catla catla). Aquacult Res doi:10.1111/j.1365-2109.2011.02904.x

  25. Swain B, Basu M, Sahoo BR et al (2011) Molecular characterization of nucleotide binding and oligomerization domain (NOD)-2, analysis of its inductive expression and down-stream signaling following ligands exposure and bacterial infection in rohu (Labeo rohita). Dev Comp Immunol. doi:10.1016/j.dci.2011.06.018

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  27. Kanther M, Rawls JF (2010) Host-microb interactions in the developing zebrafish. Curr Opin Immunol 22:10–19

    Article  PubMed  CAS  Google Scholar 

  28. Huttenhuis HB, Grou CP, Taverne-Thiele AJ et al (2006) Carp (Cyprinus carpio L.) innate immune factors are present before hatching. Fish Shellfish Immunol 20:586–596

    Article  PubMed  CAS  Google Scholar 

  29. Nayak SP, Mohanty BR, Mishra J et al (2011) Ontogeny and tissue-specific expression of innate immune related genes in rohu, Labeo rohita (Hamilton). Fish Shellfish Immunol 30:1197–1201

    Article  PubMed  CAS  Google Scholar 

  30. Van der Sar AM, Stockhammer OW, Van der Laan C et al (2006) MyD88 innate immune function in a zebrafish embryo infection model. Infect Immun 74:2436–2441

    Article  PubMed  Google Scholar 

  31. Rebl A, Goldammer T, Seyfert HM (2010) Toll-like receptor signaling in bony fish. Vet Immunol Immunopathol 134:139–150

    Article  PubMed  CAS  Google Scholar 

  32. Roach JC, Glusman G, Rowen L et al (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582

    Article  PubMed  CAS  Google Scholar 

  33. Wang Q, Dziarski R, Kirschning CJ et al (2001) Micrococci and peptidoglycan activate TLR2→MyD88→IRAK→TRAF→NIK→IKK→NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infect Immun 69(4):2270–2276

    Article  PubMed  CAS  Google Scholar 

  34. Iwaki D, Mitsuzawa H, Murakami S et al (2002) The extracellular toll-like receptor 2 domain directly binds peptidoglycan derived from Staphylococcus aureus. J Biol Chem 277(27):24315–24320

    Article  PubMed  CAS  Google Scholar 

  35. Means TK, Hayashi F, Smith KD et al (2003) The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol 170:5165–5175

    PubMed  CAS  Google Scholar 

  36. Im J, Jeon JH, Cho MK et al (2009) Induction of IL-8 expression by bacterial flagellin is mediated through lipid raft formation and intracellular TLR5 activation in A549 cells. Mol Immunol 47:614–622

    Article  PubMed  CAS  Google Scholar 

  37. Rebl A, Goldammer T, Fischer U et al (2009) Characterization of two key molecules of teleost innate immunity from rainbow trout (Oncorhynchus mykiss): MyD88 and SAA. Vet Immunol Immunopathol 131:122–126

    Article  PubMed  CAS  Google Scholar 

  38. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  39. Sun JS, Zhao L, Sun L (2011) Interleukin-8 of Cynoglossus semilaevis is a chemoattractant with immunoregulatory property. Fish Shellfish Immunol 30:1362–1367

    Article  PubMed  CAS  Google Scholar 

  40. Basu M, Swain B, Maiti NK, Routray P, Samanta M (2011) Inductive expression of toll-like receptor 5 (TLR5) and associated downstream signaling molecules following ligand exposure and bacterial infection in the Indian major carp, mrigal (Cirrhinus mrigala). Fish Shellfish Immunol. doi:10.1016/j.fsi.2011.10.031

Download references

Acknowledgments

This work was financially supported by the grant of National Agricultural Innovation Project (NAIP), Indian Council of Agricultural Research (ICAR) (Project code C4-C30018). We express our sincere gratitude to the Director, CIFA for providing necessary facility to carry out the work. We thank Dr. P. Routray, Senior Scientist, Aquaculture Production and Environment Division, CIFA, for hatchery facility and various suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Samanta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, M., Swain, B., Sahoo, B.R. et al. Induction of toll-like receptor (TLR) 2, and MyD88-dependent TLR- signaling in response to ligand stimulation and bacterial infections in the Indian major carp, mrigal (Cirrhinus mrigala) . Mol Biol Rep 39, 6015–6028 (2012). https://doi.org/10.1007/s11033-011-1415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1415-9

Keywords

Navigation