Skip to main content

Advertisement

Log in

Variant allele of CHEK2 is associated with a decreased risk of esophageal cancer lymph node metastasis in a Chinese population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Growing evidence suggests that the checkpoint kinase 2 (CHEK2) signaling pathway occupies a central position in the signaling networks of DNA-damage signaling. Many functional and molecular epidemiological studies have evaluated the association between genetic variants of CHEK2 and various cancers. To evaluate the relationship between CHEK2 functional genetic variants and esophageal cancer risk and the risk of lymph node metastasis among a Chinese population. We genotyped CHEK2 rs738722, rs2236141 and rs2236142 single nucleotide polymorphisms (SNPs) using the matrix assisted laser desorption/ionization time-of-flight mass spectrometry assay in a case–controlled study, including 380 esophageal cancer cases and 380 healthy controls in a Chinese population. We found that none of the three polymorphisms achieved significant difference in their distributions between esophageal cancer cases and controls. Multiple logistic regression analyses revealed that esophageal cancer risk was not associated significantly with the variant genotypes of the three CHEK2 polymorphisms as compared with their wild-type genotypes. However, we found that functional variant rs738722 and rs2236142 in CHEK2 might contribute to susceptibility to lymph node metastasis. Our data did not support a significant association between CHEK2 SNPs and the risk of esophageal cancer. Functional variant CHEK2 rs738722 and rs2236142 might contribute to lymph node metastasis susceptibility. The CT allele of SNP rs738722 and the GC allele of SNP rs2236142 might be a protective factor of the risk for lymph node metastasis of esophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

CHEK2:

Checkpoint kinase 2

LD:

Linkage disequilibrium

OR:

Odds ratio

SNPs:

Single nucleotide polymorphisms

References

  1. Kapeller P, Barber R, Vermeulen RJ, Ader H, Scheltens P, Freidl W, Almkvist O, Moretti M, del Ser T, Vaghfeldt P, Enzinger C, Barkhof F, Inzitari D, Erkinjunti T, Schmidt R, Fazekas F (2003) Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements. Stroke 34:441–445

    Article  PubMed  CAS  Google Scholar 

  2. Liu JF, Wang QZ, Hou J (2004) Surgical treatment for cancer of the oesophagus and gastric cardia in Hebei, China. Br J Surg 91:90–98

    Article  PubMed  CAS  Google Scholar 

  3. Muir CS, McKinney PA (1992) Cancer of the oesophagus: a global overview. Eur J Cancer Prev 1:259–264

    Article  PubMed  CAS  Google Scholar 

  4. Layke JC, Lopez PP (2006) Esophageal cancer: a review and update. Am Fam Physician 73:2187–2194

    PubMed  Google Scholar 

  5. Xing D, Tan W, Lin D (2003) Genetic polymorphisms and susceptibility to esophageal cancer among Chinese population (review). Oncol Rep 10:1615–1623

    PubMed  CAS  Google Scholar 

  6. Lee SB, Kim SH, Bell DW, Wahrer DC, Schiripo TA, Jorczak MM, Sgroi DC, Garber JE, Li FP, Nichols KE, Varley JM, Godwin AK, Shannon KM, Harlow E, Haber DA (2001) Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni Syndrome. Cancer Res 61:8062–8067

    PubMed  CAS  Google Scholar 

  7. Stevens C, Smith L, La Thangue NB (2003) Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5:401–409

    Article  PubMed  CAS  Google Scholar 

  8. Yang S, Kuo C, Bisi JE, Kim MK (2002) PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4:865–870

    Article  PubMed  CAS  Google Scholar 

  9. Bartek J, Falck J, Lukas J (2001) CHK2 kinase—a busy messenger. Natl Rev Mol Cell Biol 2:877–886

    Article  CAS  Google Scholar 

  10. Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S, Anderson CW, Appella E, Nakanishi M, Suzuki H, Nagashima K, Sawa H, Ikeda K, Motoyama N (2002) Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 21:5195–5205

    Article  PubMed  CAS  Google Scholar 

  11. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  PubMed  CAS  Google Scholar 

  12. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97:10389–10394

    Article  PubMed  CAS  Google Scholar 

  13. Chaturvedi P, Eng WK, Zhu Y, Mattern MR, Mishra R, Hurle MR, Zhang X, Annan RS, Lu Q, Faucette LF, Scott GF, Li X, Carr SA, Johnson RK, Winkler JD, Zhou BB (1999) Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18:4047–4054

    Article  PubMed  CAS  Google Scholar 

  14. Ahn JY, Schwarz JK, Piwnica-Worms H, Canman CE (2000) Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60:5934–5936

    PubMed  CAS  Google Scholar 

  15. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410:842–847

    Article  PubMed  CAS  Google Scholar 

  16. Chehab NH, Malikzay A, Appel M, Halazonetis TD (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14:278–288

    PubMed  CAS  Google Scholar 

  17. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14:289–300

    PubMed  CAS  Google Scholar 

  18. Lee JS, Collins KM, Brown AL, Lee CH, Chung JH (2000) hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201–204

    Article  PubMed  CAS  Google Scholar 

  19. Zhang S, Lu J, Zhao X, Wu W, Wang H, Lu J, Wu Q, Chen X, Fan W, Chen H, Wang F, Hu Z, Jin L, Wei Q, Shen H, Huang W, Lu D (2010) A variant in the CHEK2 promoter at a methylation site relieves transcriptional repression and confers reduced risk of lung cancer. Carcinogenesis 31:1251–1258

    Article  PubMed  CAS  Google Scholar 

  20. Hung RJ, Baragatti M, Thomas D, McKay J, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Chabrier A, Moullan N, Canzian F, Hall J, Boffetta P, Brennan P (2007) Inherited predisposition of lung cancer: a hierarchical modeling approach to DNA repair and cell cycle control pathways. Cancer Epidemiol Biomarkers Prev 16:2736–2744

    Article  PubMed  CAS  Google Scholar 

  21. Cybulski C, Gorski B, Huzarski T, Masojc B, Mierzejewski M, Debniak T, Teodorczyk U, Byrski T, Gronwald J, Matyjasik J, Zlowocka E, Lenner M, Grabowska E, Nej K, Castaneda J, Medrek K, Szymanska A, Szymanska J, Kurzawski G, Suchy J, Oszurek O, Witek A, Narod SA, Lubinski J (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75:1131–1135

    Article  PubMed  CAS  Google Scholar 

  22. Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, Qian C, Marks AF, Slager SL, Peterson BJ, Smith DI, Cheville JC, Blute ML, Jacobsen SJ, Schaid DJ, Tindall DJ, Thibodeau SN, Liu W (2003) Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 72:270–280

    Article  PubMed  CAS  Google Scholar 

  23. Kleibl Z, Havranek O, Hlavata I, Novotny J, Sevcik J, Pohlreich P, Soucek P (2009) The CHEK2 gene I157T mutation and other alterations in its proximity increase the risk of sporadic colorectal cancer in the Czech population. Eur J Cancer 45:618–624

    Article  PubMed  CAS  Google Scholar 

  24. Abnet CC, Freedman ND, Hu N, Wang Z, Yu K, Shu XO, Yuan JM, Zheng W, Dawsey SM, Dong LM, Lee MP, Ding T, Qiao YL, Gao YT, Koh WP, Xiang YB, Tang ZZ, Fan JH, Wang C, Wheeler W, Gail MH, Yeager M, Yuenger J, Hutchinson A, Jacobs KB, Giffen CA, Burdett L, Fraumeni JF Jr, Tucker MA, Chow WH, Goldstein AM, Chanock SJ, Taylor PR (2010) A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet 42:764–767

    Article  PubMed  CAS  Google Scholar 

  25. Schaeffeler E, Zanger UM, Eichelbaum M, Asante-Poku S, Shin JG, Schwab M (2008) Highly multiplexed genotyping of thiopurine s-methyltransferase variants using MALD-TOF mass spectrometry: reliable genotyping in different ethnic groups. Clin Chem 54:1637–1647

    Article  PubMed  CAS  Google Scholar 

  26. Falck J, Lukas C, Protopopova M, Lukas J, Selivanova G, Bartek J (2001) Functional impact of concomitant versus alternative defects in the Chk2–p53 tumour suppressor pathway. Oncogene 20:5503–5510

    Article  PubMed  CAS  Google Scholar 

  27. Miller CW, Ikezoe T, Krug U, Hofmann WK, Tavor S, Vegesna V, Tsukasaki K, Takeuchi S, Koeffler HP (2002) Mutations of the CHK2 gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors. Genes Chromosom Cancer 33:17–21

    Article  PubMed  CAS  Google Scholar 

  28. Koppert LB, Schutte M, Abbou M, Tilanus HW, Dinjens WN (2004) The CHEK2(*)1100delC mutation has no major contribution in oesophageal carcinogenesis. Br J Cancer 90:888–891

    Article  PubMed  CAS  Google Scholar 

  29. Easton D, McGuffog L, Thompson D, Dunning A, Tee L, Baynes C, Healey C, Pharoah P, Ponder B, Seal S, Barfoot R, Sodha N, Eeles R, Stratton M, Rahman N, Peto J, Spurdle AB, Chen XQ, Chenevix-Trench G, Hopper JL, Giles GG, McCredie MRE, Syrjakoski K, Holli K, Kallioniemi O, Eerola H, Vahteristo P, Blomqvist C, Nevanlinna H, Kataja V, Mannermaa A, Dork T, Bremer M, Devilee P, de Bock GH, Krol-Warmerdam EMM, Kroese-Jansema K, Wijers-Koster P, Cornelisse CJ, Tollenaar R, Meijers-Heijboer H, Berns E, Nagel J, Foekens J, Klijn JGM, Schutte M (2004) CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet 74:1175–1182

    Google Scholar 

  30. Zhang S, Phelan CM, Zhang P, Rousseau F, Ghadirian P, Robidoux A, Foulkes W, Hamel N, McCready D, Trudeau M, Lynch H, Horsman D, De Matsuda ML, Aziz Z, Gomes M, Costa MM, Liede A, Poll A, Sun P, Narod SA (2008) Frequency of the CHEK2 1100delC mutation among women with breast cancer: an international study. Cancer Res 68:2154–2157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (81101889), the Jiangsu Province Natural Science Foundation (BK2009207) and Social Development Foundation of Zhenjiang (SH2010017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suocheng Chen.

Additional information

H. Gu and W. Qiu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, H., Qiu, W., Wan, Y. et al. Variant allele of CHEK2 is associated with a decreased risk of esophageal cancer lymph node metastasis in a Chinese population. Mol Biol Rep 39, 5977–5984 (2012). https://doi.org/10.1007/s11033-011-1410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1410-1

Keywords

Navigation