Skip to main content
Log in

Gene expression profiling of Sinapis alba leaves under drought stress and rewatering growth conditions with Illumina deep sequencing

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sinapis alba has many desirable agronomic traits including tolerance to drought. In this investigation, we performed the genome-wide transcriptional profiling of S. alba leaves under drought stress and rewatering growth conditions in an attempt to identify candidate genes involved in drought tolerance, using the Illumina deep sequencing technology. The comparative analysis revealed numerous changes in gene expression level attributable to the drought stress, which resulted in the down-regulation of 309 genes and the up-regulation of 248 genes. Gene ontology analysis revealed that the differentially expressed genes were mainly involved in cell division and catalytic and metabolic processes. Our results provide useful information for further analyses of the drought stress tolerance in Sinapis, and will facilitate molecular breeding for Brassica crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kramer PJ (1980) The role of physiology in crop improvement. In: Staples RC, Kuhr RJ (eds) Linking research to crop production. Plenum Press, New York, pp 51–62

    Chapter  Google Scholar 

  2. Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101(7):901–907. doi:10.1093/aob/mcn018

    Article  PubMed  CAS  Google Scholar 

  3. Zhang H, Ohyama K, Boudet J, Chen Z, Yang J, Zhang M, Muranaka T, Maurel C, Zhu JK, Gong Z (2008) Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell 20:1879–1898. doi:10.1105/tpc.108.061150

    Article  PubMed  CAS  Google Scholar 

  4. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. doi:10.1038/35048692

    Article  Google Scholar 

  5. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100. doi:10.1126/science.1068275

    Article  PubMed  CAS  Google Scholar 

  6. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92. doi:10.1126/science.1068037

    Article  PubMed  CAS  Google Scholar 

  7. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses using full-length cDNA microarray. Plant Cell 13:61–72. doi:10.1105/tpc.13.1.61

    Article  PubMed  CAS  Google Scholar 

  8. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292. doi:10.1046/j.1365-313X.2002.01359.x

    Article  PubMed  CAS  Google Scholar 

  9. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. doi:10.1146/annurev.arplant.57.032905.105444

    Article  PubMed  CAS  Google Scholar 

  10. Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450. doi:10.1104/pp.105.070508

    Article  PubMed  CAS  Google Scholar 

  11. Downey RK, Stringham GR, McGregor DI, Steffanson S (1975) Breeding rapeseed and mustard crops. In: Harapiak JT (ed) Oilseed and pulse crops in western Canada. Western Cooperative Fertilize Ltd., Calgary, pp 157–183

    Google Scholar 

  12. Brown J, Brown AP, Davis JB, Erickson D (1997) Intergeneric hybridization between Sinapis alba and Brassica napus. Euphytica 93:163–168

    Article  Google Scholar 

  13. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141. doi:10.1104/pp.008532

    Article  PubMed  CAS  Google Scholar 

  14. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767. doi:10.1104/pp.103.025742

    Article  PubMed  CAS  Google Scholar 

  15. Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I (2010) Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 11:630. doi:10.1186/1471-2164-11-630

    Article  PubMed  Google Scholar 

  16. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517. doi:10.1101/gr.079558.108

    Article  PubMed  CAS  Google Scholar 

  17. Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R, Woodward J, Shah T, Mulasmanovic B, Kudapa H, Raju NL, Gothalwal R, Pande S, Xiao Y, Town CD, Singh NK, May GD, Jackson S, Varshney RK (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res 18(3):153–164. doi:10.1093/dnares/dsr007

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858. doi:10.1101/gr.078212.108

    Article  PubMed  CAS  Google Scholar 

  19. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995. doi:10.1101/gr.7.10.986

    PubMed  CAS  Google Scholar 

  20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  PubMed  CAS  Google Scholar 

  21. Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM, Chen H, Guan S, Chalkley RJ, Peterman TK, Burlingame AL, Wang ZY (2007) A proteomics study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics 6(12):2058–2071

    Article  PubMed  CAS  Google Scholar 

  22. Campalans A, Messeguer R, Goday A, Pages M (1999) Plant responses to drought, from ABA signal transduction events to the action of the induced protein. Plant Physiol Biochem 37(5):327–340

    Article  CAS  Google Scholar 

  23. Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M, Kwon SJ, Mun JH, Kim YK, Kim HU, Hur Y, Park BS (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol Cells 26(6):595–605

    PubMed  CAS  Google Scholar 

  24. Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124(3):941–948. doi:10.1104/pp.124.3.941

    Article  PubMed  CAS  Google Scholar 

  25. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463

    Article  PubMed  CAS  Google Scholar 

  26. Hasegawa PM, Bressan RA, Pardo JM (2000) The dawn of plant salt tolerance genetics. Trends Plant Sci 5(8):317–319. doi:10.1016/S1360-1385(00)01692-7

    Article  PubMed  CAS  Google Scholar 

  27. Wang ZI, Li PH, Fredricksen M, Gong ZH, Kim CS, Zhang CQ, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, Zhao YX, Zhang H (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–616. doi:10.1016/j.plantsci.2003.10.030

    Article  CAS  Google Scholar 

  28. Collins LJ, Biggs PJ, Voelckel C, Joly S (2008) An approach to transcriptome analysis of non-model organisms using short-read sequences. Genome Inform 21:3–14. doi:10.1142/9781848163324_0001

    Article  PubMed  CAS  Google Scholar 

  29. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647. doi:10.1111/j.1365-294X.2008.03666.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30671312), the Natural Science Foundation of Hubei Province (2008CDA083 and 2009CDB191), the Natural Science Foundation of Henan Province (114100510013), the Chenguang Program of Wuhan City (201050231022), the International Science and Technology Cooperation Item (S2012GR0080), and the Science and Technical Innovation Project of Hubei Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Kun Zhang, Xiao-Ping Fang or Wen-Hui Wei.

Additional information

Cai-Hua Dong, Chen Li and Xiao-Hong Yan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, CH., Li, C., Yan, XH. et al. Gene expression profiling of Sinapis alba leaves under drought stress and rewatering growth conditions with Illumina deep sequencing. Mol Biol Rep 39, 5851–5857 (2012). https://doi.org/10.1007/s11033-011-1395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1395-9

Keywords

Navigation