Skip to main content

Advertisement

Log in

Identification of potential serum biomarkers for Wilms tumor after excluding confounding effects of common systemic inflammatory factors

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Wilms tumor is the most common pediatric tumor of the kidney. Previous studies have identified several serum biomarkers for Wilms tumor; however, they lack sufficient specificity and may not adequately distinguish Wilms tumor from confounding conditions. To date, no specific protein biomarker has been confirmed for this pediatric tumor. To identify novel serum biomarkers for Wilms tumor, we used proteomic technologies to perform protein profiling of serum samples from pre-surgery and post-surgery patients with Wilms tumor and healthy controls. Some common systemic inflammatory factors were included to control for systemic inflammation. By comparing protein peaks among the three groups of sera, we identified two peaks (11,526 and 4,756 Da) showing significant differential expression not only between pre-surgery and control sera but also between pre-surgery and post-surgery sera. These two peaks were identified as serum amyloid A1 (SAA1) and apolipoprotein C-III (APO C-III). Western blot analysis confirmed that both proteins were expressed at higher levels in pre-surgery sera than in post-surgery and control sera. Using the method of leave-1-out for cross detection, we demonstrate that detection of these two candidate biomarkers had high sensitivity and specificity in discriminating pre-surgery sera from post-surgery and normal control sera. Taken together, these findings suggest that SAA1 and APO C-III are two potential biomarkers for Wilms tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36:277–285

    Article  PubMed  Google Scholar 

  2. Hargrave DR, Hann II, Richards SM, Hill FG, Lilleyman JS, Kinsey S et al (2001) Progressive reduction in treatment-related deaths in Medical Research Council childhood lymphoblastic leukaemia trials from 1980 to 1997 (UKALL VIII, X and XI). Br J Haematol 112:293–299

    Article  PubMed  CAS  Google Scholar 

  3. Eden OB, Harrison G, Richards S, Lilleyman JS, Bailey CC, Chessells JM et al (2000) Long-term follow-up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukaemia, 1980–1997. Medical Research Council Childhood Leukaemia Working Party. Leukemia 14:2307–2320

    Article  PubMed  CAS  Google Scholar 

  4. McGregor LM, Metzger ML, Sanders R, Santana VM (2007) Pediatric cancers in the new millennium: dramatic progress, new challenges. Oncology (Williston Park) 21:823–824

    Google Scholar 

  5. Rubnitz JE, Lensing S, Zhou Y, Sandlund JT, Razzouk BI, Ribeiro RC et al (2004) Death during induction therapy and first remission of acute leukemia in childhood: the St. Jude experience. Cancer 101:1677–1684

    Article  PubMed  Google Scholar 

  6. Yildiz I, Ulukutlu L, Büyükünal C, Ober A, Aksoy F, Yeker D et al (1987) Wilms’ tumor: prognostic factors and survival. Chemioterapia 6:140–143

    PubMed  CAS  Google Scholar 

  7. Maurya P, Meleady P, Dowling P, Clynes M (2007) Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res 27:1247–1255

    PubMed  CAS  Google Scholar 

  8. Diamandis EP (2004) Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteomics 3:367–378

    Article  PubMed  CAS  Google Scholar 

  9. Wang J, Zhang X, Ge X, Guo H, Xiong G, Zhu Y (2008) Proteomic studies of early-stage and advanced ovarian cancer patients. Gynecol Oncol 111:111–119

    Article  PubMed  CAS  Google Scholar 

  10. Skytt A, Thysell E, Stattin P, Stenman UH, Antti H, Wikstrom P (2007) SELDI-TOF MS versus prostate specific antigen analysis of prospective plasma samples in a nested case–control study of prostate cancer. Int J Cancer 121:615–620

    Article  PubMed  CAS  Google Scholar 

  11. Liu D, Cao L, Yu J, Que R, Jiang W, Zhou Y et al (2008) Diagnosis of pancreatic adenocarcinoma using protein chip technology. Pancreatology 9:127–135

    Article  PubMed  Google Scholar 

  12. Hundt S, Haug U (2007) Brenner H blood markers for early detection of colorectal cancer: a systematic review. Cancer Epidemiol Biomarkers Prev 16:1935–1953

    Article  PubMed  CAS  Google Scholar 

  13. Goncalves A, Bertucci F, Birnbaum D, Borg JP (2007) Protein profiling SELDI-TOF and breast cancer: clinical potential applications. Med Sci 23:23–26

    Google Scholar 

  14. Chechlinska M, Kowalewska M, Nowak R (2010) Systemic inflammation as a confounding factor in cancer biomarker discovery and validation. Nat Rev Cancer 10:2–3

    Article  PubMed  CAS  Google Scholar 

  15. Hou JM, Zhao X, Tian L, Li G, Zhang R, Yao B et al (2009) Immunotherapy of tumors with recombinant adenovirus encoding macrophage inflammatory protein 3β induces tumor-specific immune response in immunocompetent tumor-bearing mice. Acta Pharmacol Sin 30:355–363

    Article  PubMed  CAS  Google Scholar 

  16. Kelly-Spratt KS, Pitteri SJ, Gurley KE, Liggitt D, Chin A, Kennedy J et al (2011) Plasma proteome profiles associated with inflammation, angiogenesis, and cancer. PLoS One 6:e19721

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Q, Wang J, Dong R, Yang S, Zheng S (2011) Identification of novel serum biomarkers in child nephroblastoma using proteomics technology. Mol Biol Rep 38:631–638

    Article  PubMed  CAS  Google Scholar 

  18. Fan Y, Shi L, Liu Q, Dong R, Zhang Q, Yang S et al (2009) Discovery and identification of potential biomarkers of papillary thyroid carcinoma. Mol Cancer 8:79

    Article  PubMed  Google Scholar 

  19. Kondo T, Ito F, Nakazawa H, Horita S, Osaka Y, Toma H (2004) High expression of chemokine gene as a favorable prognostic factor in renal cell carcinoma. J Urol 171:2171–2175

    Article  PubMed  CAS  Google Scholar 

  20. van Grevenstein WM, Hofland LJ, van Rossen ME, van Koetsveld PM, Jeekel J, van Eijck CH (2007) Inflammatory cytokines stimulate the adhesion of colon carcinoma cells to mesothelial monolayers. Dig Dis Sci 52:2775–2783

    Article  PubMed  Google Scholar 

  21. Jablonska E, Piotrowski L, Grabowska Z (1997) Serum levels of IL-I, IL-6, TNF-α, sTNF-RI and CRP in patients with oral cavity cancer. Pathology Oncol Res 3:127–129

    Google Scholar 

  22. Gao WM, Kuick R, Orchekowski RP, Misek DE, Qiu J, Greenberg AK et al (2005) Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC Cancer 5:110

    Article  PubMed  Google Scholar 

  23. d’Eril GM, Anesi A, Maggiore M, Leoni V (2001) Biological variation of serum amyloid A in healthy subjects. Clin Chem 47:1498–1499

    PubMed  Google Scholar 

  24. Shinriki S, Ueda M, Ota K, Nakamura M, Kudo M, Ibusuki M et al (2010) Aberrant expression of serum amyloid A in head and neck squamous cell carcinoma. J Oral Pathol Med 39:41–47

    Article  PubMed  CAS  Google Scholar 

  25. Mallea E, Sodin-Semrlb S, Kovacevica A (2009) Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci 66:9–26

    Article  Google Scholar 

  26. Kovacevic A, Hammer A, Stadelmeyer E, Windischhofer W, Sundl M, Ray A et al (2008) Expression of serum amyloid A transcripts in human bone tissues, differentiated osteoblast-like stem cells and human osteosarcoma cell lines. J Cell Biochem 103:994–1004

    Article  PubMed  CAS  Google Scholar 

  27. Moshkovskii SA, Serebryakova MV, Kuteykin-Teplyakov KB, Tikhonova OV, Goufman EI, Zgoda VG et al (2005) Ovarian cancer marker of 11.7 kDa detected by proteomics is a serum amyloid A1. Proteomics 5:3790–3797

    Article  PubMed  CAS  Google Scholar 

  28. Tolson J, Bogumil R, Brunst E, Beck H, Elsner R, Humeny A et al (2004) Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab Invest 84:845–856

    Article  PubMed  CAS  Google Scholar 

  29. Chan DC, Chen CJ, Chu HC, Chang WK, Yu JC, Chen YJ et al (2007) Evaluation of serum amyloid A as a biomarker for gastric cancer. Ann Surg Oncol 14:84–93

    Article  PubMed  Google Scholar 

  30. Cho WC, Yip TT, Yip C, Yip V, Thulasiraman V, Ngan RK et al (2004) Identification of serum amyloid A protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling. Clin Cancer Res 10:43–52

    Article  PubMed  CAS  Google Scholar 

  31. Steel DM, Donoghue FC, O’Neill RM, Uhlar CM, Whitehead AS (1996) Expression and regulation of constitutive and acute phase serum amyloid A mRNAs in hepatic and non-hepatic cell lines. Scand J Immunol 44:493–500

    Article  PubMed  CAS  Google Scholar 

  32. Gutfeld O, Prus D, Ackerman Z, Dishon S, Linke RP, Levin M et al (2006) Expression of serum amyloid A, in normal, dysplastic, and neoplastic human colonic mucosa: implication for a role in colonic tumorigenesis. J Histochem Cytochem 54:63–73

    Article  PubMed  CAS  Google Scholar 

  33. Kovacevic A, Hammer A, Sundl M, Pfister B, Hrzenjak A, Ray A et al (2006) Expression of serum amyloid A transcripts in human trophoblast and fetal-derived trophoblast-like choriocarcinoma cells. FEBS Lett 580:161–167

    Article  PubMed  CAS  Google Scholar 

  34. Ruixing Y, Yiyang L, Meng L, Kela L, Xingjiang L, Lin Z et al (2010) Interactions of the apolipoprotein C-III 3238C>G polymorphism and alcohol consumption on serum triglyceride levels. Lipids Health Dis 9:86

    PubMed  Google Scholar 

  35. Onat A, Hergenç G, Sansoy V, Fobker M, Ceyhan K, Toprak S et al (2003) Apolipoprotein C-III, a strong discriminant of coronary risk in men and a determinant of the metabolic syndrome in both genders. Atherosclerosis 168:81–89

    Article  PubMed  CAS  Google Scholar 

  36. Kypreos KE (2008) ABCA1 promotes the de Novo biogenesis of apolipoprotein CIII-containing HDL particles in vivo and modulates the severity of apolipoprotein CIII-induced hypertriglyceridemia. Biochemistry 47:10491–10502

    Article  PubMed  CAS  Google Scholar 

  37. Chen J, Anderson M, Misek DE, Simeone DM, Lubman DM (2007) Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry. J Chromatogr A 1162:117–125

    Article  PubMed  CAS  Google Scholar 

  38. Lane DM, Boatman KK, McConathy WJ (1995) Serum lipids and apolipoproteins in women with breast masses. Breast Cancer Res Treat 34:161–169

    Article  PubMed  CAS  Google Scholar 

  39. Raynes JG, Eagling S, McAdam KP (1991) Acute-phase protein synthesis in human hepatoma cells: differential regulation of serum amyloid A (SAA) and haptoglobin by interleukin-1 and interleukin-6. Clin Exp Immunol 83:488–491

    Article  PubMed  CAS  Google Scholar 

  40. Bausserman LL, Herbert PN, Rodger R, Nicolosi RJ (1984) Rapid clearance of serum amyloid A from high-density lipoproteins. Biochim Biophys Acta 792:186–191

    PubMed  CAS  Google Scholar 

  41. Poitou C, Coussieu C, Rouault C, Coupaye M, Cancello R, Bedel JF et al (2006) Serum amyloid A: a marker of adiposity-induced low-grade inflammation but not of metabolic status. Obesity (Silver Spring) 14:309–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (No. 81071782) from the National Natural Science Foundation of China.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wang, L., Zhang, D. et al. Identification of potential serum biomarkers for Wilms tumor after excluding confounding effects of common systemic inflammatory factors. Mol Biol Rep 39, 5095–5104 (2012). https://doi.org/10.1007/s11033-011-1305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1305-1

Keywords

Navigation