Skip to main content
Log in

VEGF is essential for the growth and migration of human hepatocellular carcinoma cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis. VEGF induces new vessel formation and tumor growth by inducing mitogenesis and chemotaxis of normal endothelial cells and increasing vascular permeability. However, little is known about VEGF function in the proliferation, survival or migration of hepatocellular carcinoma cells (HCC). In the present study, we have found that VEGF receptors are expressed in HCC line BEL7402 and human HCC specimens. Importantly, VEGF receptor expression correlates with the development of the carcinoma. By using a comprehensive approaches including TUNEL assay, transwell and wound healing assays, migration and invasion assays, adhesion assay, western blot and quantitative RT-PCR, we have shown that knockdown of VEGF165 expression by shRNA inhibits the proliferation, migration, survival and adhesion ability of BEL7402. Knockdown of VEGF165 decreased the expression of NF-κB p65 and PKCα while increased the expression of p53 signaling molecules, suggesting that VEGF functions in HCC proliferation and migration are mediated by P65, PKCα and/or p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taro Y, Kaneko S (2010) Molecular pathogenesis of hepatocellular carcinoma. Gan Kagaku Ryoho 37(1):14–17

    Google Scholar 

  2. Zhang Y, Xia HHX (2008) Novel therapeutic approaches for hepatocellulcar carcinoma: Fact and fiction. World J Gastroenterol 14(11):1641–1642

    Article  PubMed  Google Scholar 

  3. Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29(6 Suppl 16):10–14

    PubMed  CAS  Google Scholar 

  4. Fernando NH, Hurwitz HI (2003) Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer. Semin Oncol 30(3 Suppl 6):39–50

    Article  PubMed  CAS  Google Scholar 

  5. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248

    Article  PubMed  CAS  Google Scholar 

  6. Santos SC, Dias S (2004) Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 103(10):3883–3889

    Article  PubMed  CAS  Google Scholar 

  7. Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L et al (2001) Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 98(19):10857–10862

    Article  PubMed  CAS  Google Scholar 

  8. Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M (1996) Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 70:4805–4810

    PubMed  CAS  Google Scholar 

  9. Tang J, Wang J, Guo L, Kong X, Yang J, Zheng F et al (2010) Mesenchymal stem cells modified with stromal cell-derived factor 1α improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Mol Cells 29(1):9–19

    Article  PubMed  Google Scholar 

  10. Tang J, Wang J, Kong X, Yang J, Guo L, Zheng F et al (2009) Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3 K/Akt pathway. Exp Cell Res 315(20):3521–3531

    Article  PubMed  CAS  Google Scholar 

  11. Hu Y, Lehrach H, Janitz M (2010) Apoptosis screening of human chromosome 21 proteins reveals novel cell death regulators. Mol Biol Rep 37(7):3381–3387

    Article  PubMed  CAS  Google Scholar 

  12. Shaw LM (2005) Tumor cell invasion assays. Methods Mol Biol 294:97–105

    PubMed  Google Scholar 

  13. Nagasaki A, Kanada M, Uyeda TQ (2009) Cell adhesion molecules regulate contractile ring-independent cytokinesis in Dictyostelium discoideum. Cell Res 19(2):236–246

    Article  PubMed  CAS  Google Scholar 

  14. Wang L, Xue L, Yan H, Li J, Lu Y (2010) Effects of ROCK inhibitor, Y-27632, on adhesion and mobility in esophageal squamous cell cancer cells. Mol Biol Rep 37(4):1971–1977

    Article  PubMed  CAS  Google Scholar 

  15. Deli G, Jin CH, Mu R, Yang S, Liang Y, Chen D et al (2005) Immunohistochemical assessment of angiogenesis in hepatocellular carcinoma and surrounding cirrhotic liver tissues. World J Gastroenterol 11(7):960–963

    PubMed  Google Scholar 

  16. Fragoso R, Elias AP, Dias S (2007) Autocrine VEGF loops, signaling pathways, and acute leukemia regulation. Leuk Lymphoma 48(3):481–488

    Article  PubMed  CAS  Google Scholar 

  17. Danilova N, Sakamoto KM, Lin S (2008) p53 family in development. Mech Dev 125(11–12):919–931

    Article  PubMed  CAS  Google Scholar 

  18. Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R (2010) p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 31(9):1501–1508

    Article  PubMed  CAS  Google Scholar 

  19. Guan Y-H, He Q, La Z (2006) Roles of p53 in carcinogenesis, diagnosis and treatment of hepatocellular carcinoma. J Cancer Mol 2:191–197

    CAS  Google Scholar 

  20. Aaltonen V, Peltonen J (2010) PKCalpha/beta I inhibitor Go6976 induces dephosphorylation of constitutively hyperphosphorylated Rb and G1 arrest in T24 cells. Anticancer Res 30(10):3995–3999

    PubMed  CAS  Google Scholar 

  21. Wu TT, Hsieh YH, Hsieh YS, Liu JY (2008) Reduction of PKC alpha decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma. J Cell Biochem 103(1):9–20

    Article  PubMed  CAS  Google Scholar 

  22. Deeds L, Teodorescu S, Chu M, Yu Q, Chen CY (2003) A p53-independent G1 cell cycle checkpoint induced by the suppression of protein kinase C alpha and theta isoforms. J Biol Chem 278(41):39782–39793

    Article  PubMed  CAS  Google Scholar 

  23. Coutinho I, Pereira G, Leão M, Gonçalves J, Côrte-Real M, Saraiva L (2009) Differential regulation of p53 function by protein kinase C isoforms revealed by a yeast cell system. FEBS Lett. 583(22):3582–3588

    Article  PubMed  CAS  Google Scholar 

  24. Frankel AE, Gill PS (2004) VEGF and myeloid leukemias. Leuk Res 28:675

    Article  PubMed  CAS  Google Scholar 

  25. Folkman J (1971) Tumor angiogenesis. Therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  26. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468: 829–833

    Google Scholar 

  27. Geva R, Prenen H, Topal B, Aerts R, Vannoote J, Van Cutsem E (2010) Biologic modulation of chemotherapy in patients with hepatic colorectal metastases: the role of anti-VEGF and anti-EGFR antibodies. J Surg Oncol 102(8):937–945

    Article  PubMed  Google Scholar 

  28. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W et al (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106(4):511–521

    Article  PubMed  CAS  Google Scholar 

  29. Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G et al (2002) VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417:954–958

    Article  PubMed  CAS  Google Scholar 

  30. Podar K, Anderson KC (2007) Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies. Cell Cycle 6(5):538–542

    Article  PubMed  CAS  Google Scholar 

  31. Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, Witzig TE et al (2010) Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 29(8):1190–1202

    Article  PubMed  CAS  Google Scholar 

  32. Ulivi P, Arienti C, Amadori D, Fabbri F, Carloni S, Tesei A et al (2009) Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol 220(1):214–221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National natural Science Foundation of China (81170095; 30700306), Hubei Health Department Science Foundation (JX5B24), Hubei Education Department Science Foundation (T2008010,T201112, Q200524003), China; And National Institutes of Health (HL093429 and HL107526).

Conflicts of interest

All authors have read and approved the manuscript, and there is no ethical problem or conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Wang, JN., Tang, JM. et al. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells. Mol Biol Rep 39, 5085–5093 (2012). https://doi.org/10.1007/s11033-011-1304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1304-2

Keywords

Navigation