Skip to main content
Log in

Geographic patterns of histone H1 encoding genes allelic variation in Aegilops tauschii Coss. (Poaceae)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An electrophoretic analysis of histone H1 of Aegilops tauschii was carried out using the collection of 303 accessions (156 of ssp. tauschii and 147 of ssp. stangulata) representing all the species range. Three, four and six allelic variants were found for Hst1, Hst2 and Hst3 locus, respectively. The level of histone H1 allelic variability in ssp. strangulata was considerably higher than in ssp. tauschii. Expected heterozygosity (HE) for the loci Hst1, Hst2 and Hst3 made up 0.066, 0.484 and 0.224 respectively in ssp. strangulata vs. 0.024, 0.051 and 0.214 in ssp. tauschii. Besides the most common haplotype, Hst1 1000, Hst2 1000, Hst3 1000, five other haplotypes with frequencies of occurrence higher than 0.02 were found in ssp. strangulata, and only one such haplotype—in ssp. tauschii. The most part of histone H1 variation in ssp. tauschii was in the western part of the area. In ssp. strangulata, the alleles Hst2 988 and Hst2 973 were found only in Caucasia, and the allele Hst1 1043—only in Precaspian Iran and south-eastern Azerbaijan. Histone H1 variation patterns in Ae. tauschii are very similar to those of non-coding sequences of chloroplast DNA. Therefore, histone H1 allelic variation in this species seems to be mostly neutral. Nevertheless, the evidences were pointed out, revealing that some part of variation at Hst2 locus in ssp. strangulata could be adaptive. It seems that Hst2 1026 allele is disadvantageous in western Precaspian Iran, the region with the high annual rainfall, and being eliminated by natural selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dudnikov AJ (1998) Allozyme variation in Transcaucasian populations of Aegilops squarrosa. Heredity 80:248–258

    Article  Google Scholar 

  2. Dudnikov AJ (2009) Searching for an effective conservation strategy of Aegilops tauschii genetic variation. Cereal Res Commun 37:31–36

    Article  Google Scholar 

  3. Kimber G, Feldman M (1987) Wild wheat. An introduction. special report 353. College of Agriculture, University of Missouri, Columbia, MO

  4. van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wagenningen Agricultural University Papers, Wageningen, The Netherlands

    Google Scholar 

  5. Zhukovsky PM (1928) A critical-systematical survey of the species of the genus Aegilops L. Bull Appl Bot, Genet, Pl Breed 18:417–609 (in Russian)

    Google Scholar 

  6. Eig A (1929) Monographish-kritische Ubersicht der Gattung Aegilops. Repert Spec Nov Reg Veget Beich 55:1–228

    Google Scholar 

  7. Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180

    Article  Google Scholar 

  8. Dudnikov AJ (2000) Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet Resour Crop Evol 47:185–190

    Article  Google Scholar 

  9. Jaaska V (1980) Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theor Appl Genet 56:273–284

    Article  CAS  Google Scholar 

  10. Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase enzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Pl Syst Evol 137:259–273

    Article  CAS  Google Scholar 

  11. Dudnikov AJ, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Resour Crop Evol 53:579–586

    Article  Google Scholar 

  12. Nei M (1975) Molecular population genetics and evolution. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  13. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Phil Trans R Soc Lond B 351:1291–1298

    Article  Google Scholar 

  14. Dudnikov AJ (2011) Spatial patterns of adenylate kinase, catalase, endopeptidase and fructose-1,6-diphosphatase encoding genes allelic variation in Aegilops tauschii Coss. Genet Resour Crop Evol. doi:10.1007/s10722-011-9659-8

  15. Allan J, Mitchell N, Harborne L, Bohm C, Crane-Robinson C (1986) Roles of H1 domains in determining higher order chromatin structure and H1 location. J Mol Biol 187:591–601

    Article  PubMed  CAS  Google Scholar 

  16. Thoma F, Losa R, Koller T (1983) Involvement of the domains of histones H1 and H5 in the structural organization of soluble chromatin. J Mol Biol 167:619–640

    Article  PubMed  CAS  Google Scholar 

  17. Sato MH, Ura K, Hohmura KI, Tokumasu F, Yoshimura SH, Hanaoka F, Takeyasu K (1999) Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin. FEBS Lett 452:267–271

    Article  PubMed  CAS  Google Scholar 

  18. Felsenfeld G (1992) Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224

    Article  PubMed  CAS  Google Scholar 

  19. Shen X, Gorovsky MA (1996) Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 86:475–483

    Article  PubMed  CAS  Google Scholar 

  20. Sera T, Wolffe AP (1998) Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes. Mol Cell Biol 18:3668–3680

    PubMed  CAS  Google Scholar 

  21. Folco HD, Freitag M, Ramon A, Temporini ED, Alvarez ME, Garcia I, Scazzocchio C, Selker EU, Rosa AL (2003) Histone H1 Is required for proper regulation of pyruvate decarboxylase gene expression in Neurospora crassa. Eukaryot Cell 2:341–350

    Article  PubMed  CAS  Google Scholar 

  22. Shen X, Yu L, Weir JW, Gorovsky MA (1995) Linker histones are not essential and affect chromatin condensation in vivo. Cell 82:47–56

    Article  PubMed  CAS  Google Scholar 

  23. Ramon A, Muro-Pastor MI, Scazzocchio C, Gonzalez R (2000) Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans. Mol Microbiol 35:223–233

    Article  PubMed  CAS  Google Scholar 

  24. Barra JL, Rhounim L, Rossignol J-L, Faugeron G (2000) Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span. Mol Cell Biol 20:61–69

    Article  PubMed  CAS  Google Scholar 

  25. Sirotkin AM, Edelmann W, Cheng H, Klein-Szanto A, Kucherlapati R, Skoultchi AI (1995) Mice develop normally without the H10 linker histone. Proc Natl Acad Sci USA 92:6434–6438

    Article  PubMed  CAS  Google Scholar 

  26. Lin Q, Sirotkin A, Skoultchi AI (2000) Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol Cell Biol 20:2122–2128

    Article  PubMed  CAS  Google Scholar 

  27. Fan Y, Sirotkin A, Russell RG, Ayala J, Skoultchi AI (2001) Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol Cell Biol 21:7933–7943

    Article  PubMed  CAS  Google Scholar 

  28. Przewloka MR, Wierzbicki AT, Slusarczyk J, Kuras M, Grasser KD, Stemmer C, Jerzmanowski A (2002) The ‘‘droughtinducible’’histone H1s of tobacco play no role in male sterility linked to alterations in H1 variants. Planta 215:371–379

    Article  PubMed  CAS  Google Scholar 

  29. Wierzbicki AT, Jerzmanowski A (2005) Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation. Genetics 169:997–1008

    Article  PubMed  CAS  Google Scholar 

  30. Isengerg I (1979) Histones. Annu Rev Biochem 48:159–191

    Article  Google Scholar 

  31. Von Holt C, Strickland WM, Brandt WF, Strickland MS (1979) More histone structures. FEBS Lett 100:201–218

    Article  Google Scholar 

  32. Wells DE, McBridle CA (1989) Comprehensive compilation and alignment of histones and histone genes. Nucl Acid Res 17(Seq Suppl r):311–346

    Google Scholar 

  33. Berdnikov VA, Rozov SM, Temnykh SV, Gorel FL, Kosterin OE (1993) Adaptive nature of interspecies variation of histone H1 in insects. J Mol Evol 36:497–507

    Article  CAS  Google Scholar 

  34. Sarg B, Green A, Soderkvist P, Helliger W, Rundquist I, Lindner HH (2005) Characterization of sequence variations in human histone H1.2 and H1.4 subtypes. FEBS J 272:3673–3683

    Article  PubMed  CAS  Google Scholar 

  35. Gornicka-Michalska E, Palyga J, Kowalski A, Cywa-Benko K (2006) Sequence variants of chicken linker histone H1.a. FEBS J 273:1240–1250

    Article  PubMed  CAS  Google Scholar 

  36. Berdnikov VA, Bogdanova VS, Gorel FL, Rozov SM (1992) Territorial distribution of histone H1 alleles in a population of Vicia unijuga formed after urbanization of natural habitat. Can J Bot 70:1591–1595

    Article  Google Scholar 

  37. Berdnikov VA, Bogdanova VS, Rozov SM, Kosterin OE (1993) The geographic patterns of histone H1 allelic frequencies formed in the course of pea (Pisum sativum L.) cultivation. Heredity 71:199–209

    Article  CAS  Google Scholar 

  38. Sherod D, Johnson G, Chalkley R (1974) Studies on the heterogenity of lysine-rich histones in dividing cells. J Biol Chem 249:3923–3931

    PubMed  CAS  Google Scholar 

  39. Dudnikov AJ, Gorel FL, Berdnikov VA (2002) Chromosomal location of histone H1 genes in common wheat. Cereal Res Commun 30:55–61

    CAS  Google Scholar 

  40. Ayala FJ, Kiger JA (1984) Modern genetics. The Benjamin/Cummings Publishing Company Inc., Menlo Park, CA

    Google Scholar 

  41. McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Sinkard AE (ed) Proceedings of the 9th international wheat genetic symposium, vol 5. Saskatoon, Saskatchewan, Canada

  42. Dudnikov AJ (2011) Chloroplast DNA non-coding sequences variation in Aegilops tauschii Coss.: evolutionary history of the species. Genet Resour Crop Evol (submitted)

  43. Feldman M (2001) Origin of cultivated wheat. In: Bonjean P, Angus WJ (eds) The world wheat book. A history of wheat breeding. Lavoidier Publishing, Paris, pp 3–58

    Google Scholar 

  44. Kosterin OE, Bogdanova VS, Gorel FL, Rozov SM, Trusov YA, Berdnikov VA (1994) Histone H1 of the garden pea (Pisum sativum L.); composition, developmental changes, allelic polymorphism and inheritance. Plant Sci 101:189–202

    Article  CAS  Google Scholar 

  45. Nasuda S, Liu Y, Sacamoto A, Nakayama T, Iwabchu M, Tsunewaki K (1993) Chromosomal locations of the genes for and histones and a histone gene-binding protein family HBP-1 in common wheat. Plant Mol Biol 22:603–614

    Article  PubMed  CAS  Google Scholar 

  46. Goltsberg IA, Pokrovskaya YV (1972) Agroclimatic atlas of the world. Gidrometeoizdat, Moscow, USSR (in Russian)

    Google Scholar 

Download references

Acknowledgments

I would like to express my sincere gratitude to Dr. Vera S. Bogdanova and Dr. Oleg E. Kosterin for their kind help in the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ju. Dudnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudnikov, A.J. Geographic patterns of histone H1 encoding genes allelic variation in Aegilops tauschii Coss. (Poaceae). Mol Biol Rep 39, 2355–2363 (2012). https://doi.org/10.1007/s11033-011-0986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0986-9

Keywords

Navigation