Skip to main content
Log in

Molecular cloning and functional analysis of one ZEITLUPE homolog GmZTL3 in soybean

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

ZEITLUPE (ZTL) plays an important role in the control of flowering time and photomorpogenesis in Arabidopsis and is highly conserved throughout the plant kingdom. Here, we report the characterization of a soybean ZTL homolog GmZTL3 (Glycine max ZTL 3). The absorption spectrum of the recombinant GmZTL3 proteins indicates that it may be a UV/blue photoreceptor. The GmZTL3 expression is independent of diurnal cycles and varies in different tissues along with developmental stages. Before the unifoliolates open fully, GmZTL3 transcripts concentrate in the roots and hypocotyls, while at flowering GmZTL3 accumulates at higher abundance in stems and petioles. Furthermore, the GmZTL3 mRNA accumulates in all kinds of leaves before flowering and concentrates in maturation seeds. In Arabidopsis, the ectopic expression of GmZTL3 delays flowering, implicating GmZTL3 is an inhibitor of flowering induction. Our data indicate that GmZTL3 probably functions as a photoreceptor and plays a role in multiple developmental processes, including the control of flowering time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Somers DE (1999) The physiology and molecular bases of the plant circadian clock. Plant Physiol 121(1):9–20

    PubMed  CAS  Google Scholar 

  2. Salome PA, McClung CR (2004) The Arabidopsis thaliana clock. J Biol Rhythm 19(5):425–435

    CAS  Google Scholar 

  3. Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13(1):83–89

    PubMed  CAS  Google Scholar 

  4. Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua NH, Tobin EM, Kay SA, Imaizumi T (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22(3):606–622

    PubMed  CAS  Google Scholar 

  5. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293(5531):880–883

    PubMed  CAS  Google Scholar 

  6. Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101(3):319–329

    PubMed  CAS  Google Scholar 

  7. Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449(7160):356–360

    PubMed  CAS  Google Scholar 

  8. Mas P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426(6966):567–570

    PubMed  CAS  Google Scholar 

  9. Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410(6827):487–490

    PubMed  CAS  Google Scholar 

  10. Kim WY, Geng R, Somers DE (2003) Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc Natl Acad Sci USA 100(8):4933–4938

    PubMed  CAS  Google Scholar 

  11. Kiba T, Henriques R, Sakakibara H, Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19(8):2516–2530

    PubMed  CAS  Google Scholar 

  12. Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16(3):769–782

    PubMed  CAS  Google Scholar 

  13. Suzuki Y, Mae T, Makino A (2008) RNA extraction from various recalcitrant plant tissues with a cethyltrimethylammonium bromide-containing buffer followed by an acid guanidium thiocyanate-phenol-chloroform treatment. Biosci Biotechnol Biochem 72(7):1951–1953

    PubMed  CAS  Google Scholar 

  14. Chen QJ, Zhou HM, Chen J, Wang XC (2006) Using a modified TA cloning method to create entry clones. Anal Biochem 358(1):120–125

    PubMed  CAS  Google Scholar 

  15. Lambert LNC, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D strctures. Bioinformatics 18(9):7

    Google Scholar 

  16. Nakasako M, Zikihara K, Matsuoka D, Katsura H, Tokutomi S (2008) Structural basis of the LOV1 dimerization of Arabidopsis phototropins 1 and 2. J Mol Biol 381(3):718–733

    PubMed  CAS  Google Scholar 

  17. Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93

    PubMed  Google Scholar 

  18. Xiao C, Chen F, Yu X, Lin C, Fu YF (2009) Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Mol Biol 71(1–2):39–50

    PubMed  CAS  Google Scholar 

  19. Briggs WR (2007) The LOV domain: a chromophore module servicing multiple photoreceptors. J Biomed Sci 14(4):499–504

    PubMed  CAS  Google Scholar 

  20. Harmer SL, Panda S, Kay SA (2001) Molecular bases of circadian rhythms. Annu Rev Cell Dev Biol 17:215–253

    PubMed  CAS  Google Scholar 

  21. Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2(9):702–715

    PubMed  CAS  Google Scholar 

  22. Kiyosue T, Wada M (2000) LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. Plant J 23(6):807–815

    PubMed  CAS  Google Scholar 

  23. Murakami M, Tago Y, Yamashino T, Mizuno T (2007) Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48(1):110–121

    PubMed  CAS  Google Scholar 

  24. Taylor A, Massiah AJ, Thomas B (2010) Conservation of Arabidopsis thaliana photoperiodic flowering time genes in onion (Allium cepa L.). Plant Cell Physiol 51(10):1638–1647

    PubMed  CAS  Google Scholar 

  25. Kim WY, Hicks KA, Somers DE (2005) Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol 139(3):1557–1569

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. George Coupland and Jane Parker kindly provided destination vectors of pLeela, pENSG-GFP, and pEXSP-YFP, and Mr. Feng Zhao raised the GmZTL antibody. This work was supported in part by Transgenic program (Nos 2011ZX08009-001 and 2011ZX08004-005), the National Natural Science Founds (31000681), and the Chinese National Key Basic Research “973” Program (2010CB125906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Jian Chen or Yong-Fu Fu.

Additional information

Zheng-Gang Xue, Xiao-Mei Zhang and Chen-Fang Lei contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 857 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, ZG., Zhang, XM., Lei, CF. et al. Molecular cloning and functional analysis of one ZEITLUPE homolog GmZTL3 in soybean. Mol Biol Rep 39, 1411–1418 (2012). https://doi.org/10.1007/s11033-011-0875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0875-2

Keywords

Navigation