Skip to main content
Log in

Molecular diversity of bacteria in Yunnan yellow cattle (Bos taurs) from Nujiang region, China

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The rumen content of four Yunnan Yellow Cattle (Bos taurs) were collected to determine the bacteria diversity by using 16S rRNA gene sequence analysis. A total of 129 sequences were examined and the sequences were referred as 107 OTU (Operational Taxonomy Unit) according to the similarity level of 97% in gene sequence. Similarity analysis revealed that Yunnan Yellow Cattle had 12 sequences (10 OTU) shared 97% or greater similarity with cultured rumen bacteria Butyrivibrio fibrisolvens, Succiniclasticum ruminis, Ruminococcus bromii, Clostridium proteoclasticum, Ruminococcus flavefaciens, Pseudobutyrivibrio ruminis, Jeotgalicoccus psychrophilus, and Prevotella ruminicola, which accounting for 9.3% of the total clones (9.2% of the total OTU). The further 12 sequences (9 OTU) shared 90–97% similarity with cultured bacteria Clostridium aminobutyricum, butyrate-producing bacterium, Schwartzia succinivorans, Prevotella ruminicola, Eubacterium ruminantium, Ruminococcus albus, and Clostridium termitidis, also accounting for 9.3% of the total sequences (8.3% of the total OTU). The remaining 105 sequences (90 OTU) shared less than 90% similarity with cultured bacteria, accounting for 81.4% of the total sequences (82.5% of the total OTU). According to the phylogenetic analysis, all sequences were phylogenetically placed within phyla of low G+C subdivision (accounting for 72.1 and 72.5% of the total clones and OTU, respectively) and CFB subdivision (Cytophaga-Flexibacter-Bacteroides; accounting for 27.9 and 27.5% of the total clones and OTU, respectively). Among the examined clones, rare bacteria Jeotgalicoccus psychrophilus was detected in the rumen of cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic Press, London and New York, pp 117–132

  2. Dehority BA, Tirabasso PA, Grifo AP (1989) Most-probable-number procedures for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium. Appl Environ Microbiol 55:2789–2792

    PubMed  CAS  Google Scholar 

  3. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  4. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472

    PubMed  CAS  Google Scholar 

  5. Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693

    PubMed  CAS  Google Scholar 

  6. Shin EC, Choi BR, Lim WJ, Hong SY, An CL, Cho KM, Kim YK, An JM, Kang JM, Lee SS, Kim H, Yun HD (2004) Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 10:313–319

    PubMed  CAS  Google Scholar 

  7. Hungate RE (1966) The rumen and its microbes. Academic Press, New York

    Google Scholar 

  8. Bryant MP, Burkey LA (1953) Cultural methods and some characteristics of some of the numerous groups of bacteria in the bovine rumen. J Dairy Sci 36:205–217

    Google Scholar 

  9. Krause DO, Russell JB (1996) How many ruminal bacteria are there? J Dairy Sci 79:1467–1475

    PubMed  CAS  Google Scholar 

  10. Deng W, Xi D, Mao H, Wanapat M (2008) The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep 35:265–274

    PubMed  CAS  Google Scholar 

  11. Zhang H, Chen L (2010) Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol Biol Rep 37:4013–4022

    PubMed  CAS  Google Scholar 

  12. Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies in ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084

    PubMed  CAS  Google Scholar 

  13. Koike S, Yoshitani S, Kobayashi Y, Tanaka K (2003) Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol Lett 229:23–30

    PubMed  CAS  Google Scholar 

  14. Kocherginskaya SA, Aminov RI, White BA (2001) Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistically ecology approaches. Anaerobe 7:119–134

    CAS  Google Scholar 

  15. Leng J, Zhong X, Zhu RJ, Yang SL, Gou X, Mao HM (2011) Assessment of protozoa in Yunnan Yellow Cattle rumen based on the 18S rRNA sequences. Mol Biol Rep 38:577–585

    PubMed  CAS  Google Scholar 

  16. Zhao G, YU M, Zhang Y, Yang GR, Fu MF, Li JP, Yang XC, Yang S, Huang BZ (2009) The investigation of growth and production performances in Yunnan Yellow Cattle. Anim Husb Vet Med 41:65–67 (in Chinese)

    Google Scholar 

  17. Qi KX, Zhang JC, Wang AK, Wang J, Yang SP, Huang BZ, Yuan XP (2009) The survey and analysis of growth and reproductive performances in Yunnan Yellow Cattle. China Herbiv 29:67–68 (in Chinese)

    Google Scholar 

  18. Tian YB, Ge CR, Guo CY, Xiao WJ (1998) Relationship between breed characteristics and ecological environment of Yunnan Yellow Cattle. J Yellow Cattle Sci 24:50–54 (in Chinese)

    Google Scholar 

  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  20. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen G, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucleic Acids Res 29:173–174

    PubMed  CAS  Google Scholar 

  21. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  CAS  Google Scholar 

  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    PubMed  CAS  Google Scholar 

  23. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  CAS  Google Scholar 

  24. An D, Dong X, Dong Z (2005) Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 4:207–215

    Google Scholar 

  25. Yang LY, Chen J, Cheng XL, Xi DM, Yang SL, Deng WD, Mao HM (2009) Phylogenetic analysis of 16S rDNA sequences reveals rumen bacterial diversity in Yaks (Bos grunniens). Mol Biol Rep 37:553–562

    Google Scholar 

  26. Edward JE, McEwan NR, Travis AJ, Wallace RJ (2004) 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek 86:263–281

    Google Scholar 

  27. Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matusi H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169

    CAS  Google Scholar 

  28. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequences analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  29. Sinha RN, Ranganathan B (1983) Cellulolytic bacteria in buffalo rumen. J Appl Bacteriol 54:1–6

    Google Scholar 

  30. Stewart CS, Flint HJ, Bryant MP (1997) The rumen bacteria. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Chapman and Hall, London, pp 10–72

    Google Scholar 

  31. Leng J, Xie L, Zhu RJ, Yang SL, Gou X, Li S, Mao HM. Dominant bacterial communities in the rumen of Gayals (Bos frontalis), Yaks (Bos grunniens) and Yunnan Yellow Cattle (Bos taurs) revealed by denaturing gradient gel electrophoresis (DGGE). Mol Biol Rep. doi:10.1007/s11033-010-0627-8

  32. Wen Z, Morrison M, Wen ZZ (1997) Glutamate dehydrogenase activity profiles for type strains of ruminal Prevotella spp. Appl Environ Microbiol 63:3314–3317

    PubMed  CAS  Google Scholar 

  33. Griswold KE, White BA, Mackie RI (1999) Diversity of extracellular proteolytic activities among Prevotella species from the rumen. Curr Microbiol 39:187–194

    PubMed  CAS  Google Scholar 

  34. Lou J, Dawson KA, Strobel HJ (1996) Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola. Appl Environ Microbiol 62:770–1773

    Google Scholar 

  35. Avgustin G, Wallace RJ, Flint HJ (1997) Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov., and redefinition of Prevotella ruminicola. Int J Syst Bacteriol 47:284–288

    PubMed  CAS  Google Scholar 

  36. Flint HJ, Mcpherson EC, Bisset J (1989) Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and β (1,3-1,4) glucanase activities. Appl Environ Microbiol 55:1230–1233

    PubMed  CAS  Google Scholar 

  37. Kirby J, Martin JC, Daniel AS, Flint HJ (1997) Dockerin-like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol Lett 149:213–219

    PubMed  CAS  Google Scholar 

  38. Wina E, Muetzel S, Becker K (2006) The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of Sapindus rarak saponins. J Appl Microbiol 100:114–122

    PubMed  CAS  Google Scholar 

  39. Forster RJ, Teather RM, Gong J, Deng SJ (1996) 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Lett Appl Microbiol 23:218–222

    PubMed  CAS  Google Scholar 

  40. Forster RJ, Gong J, Teather RM (1997) Group-specific 16S rRNA hybridization probes for determinative and community structure studies of Butyrivibrio fibrisolvens in the rumen. Appl Environ Microbiol 63:1256–1260

    PubMed  CAS  Google Scholar 

  41. Willems A, Amat-Marco M, Collins MD (1996) Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the Gram-positive bacteria. Int J Syst Bacteriol 46:95–199

    Google Scholar 

  42. van Gylswyk NO, Hippe H, Rainey FA (1996) Pseudobutyrivibrio ruminis gen. nov., sp. nov., a butyrate-producing bacterium from the rumen that closely resembles Butyrivibrio fibrisolvens in phenotype. Int J Syst Bacteriol 46:559–563

    Google Scholar 

  43. van Gylswyk NO, Hippe H, Rainey FA (1997) Schwartzia succinivorans gen. nov., sp. nov., another ruminal bacterium utilizing succinate as the sole energy source. Int J Syst Bacteriol 47:155–159

    PubMed  Google Scholar 

  44. Taguchi H, Koike S, Kobayashi Y, Cann IKO, Karita S (2004) Partial characterization of structure and function of a xylanase gene from the rumen hemicellulolytic bacterium Eubacterium ruminantium. Anim Sci J 75:325–332

    CAS  Google Scholar 

  45. Kozakai K, Nakamura T, Kobayashi Y, Tanigawa T, Osaka I, Kawamoto S, Hara S (2007) Effect of mechanical processing of corn silage on in vitro ruminal fermentation, and in situ bacterial colonization and dry matter degradation. Can J Anim Sci 87:259–267

    Google Scholar 

  46. Dehority BA, Tirabasso PA (1998) Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose. J Anim Sci 76:2905–2911

    PubMed  CAS  Google Scholar 

  47. Wanapat M, Ngarmsang A, Korkhuntot S, Nontaso N, Wachirapakorn C, Beakes G, Rowlinson P (2000) A comparative study on the rumen microbial population of cattle and swamp buffalo raised under traditional village conditions in the Northeast of Thailand. Asian Aust J Anim Sci 13:918–921

    Google Scholar 

  48. Dehority BA, Orpin CG (1997) Development of and natural fluctuations in rumen microbial populations. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Chapman and Hall, London, pp 196–245

    Google Scholar 

Download references

Acknowledgment

This study was financed by National Natural Science Foundation of China (grant no. 31060314, 30960256), Yunnan Natural Science Foundation (grant no. 2010CD059), the ‘‘863’’ Key Program of China (Grant No. 2008AA101001) and the Natural Science Foundation Major Research Project of Yunnan Province (grant no. 2004NG04) are acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Mao.

Additional information

J. Leng, Y. M. Cheng and C. Y. Zhang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, J., Cheng, Y.M., Zhang, C.Y. et al. Molecular diversity of bacteria in Yunnan yellow cattle (Bos taurs) from Nujiang region, China. Mol Biol Rep 39, 1181–1192 (2012). https://doi.org/10.1007/s11033-011-0848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0848-5

Keywords

Navigation