Skip to main content

Advertisement

Log in

The cancer marker neutrophil gelatinase-associated lipocalin is highly expressed in human endometrial hyperplasia

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recently, endometrial hyperplasia was identified as presenting a higher risk for progressing to endometrial carcinoma more readily than adenomyosis. The Lcn-2 gene encodes neutrophil gelatinase-associated lipocalin (NGAL), which promotes cell proliferation and serves as a cancer marker in some cancers. In our current study, we investigated the relationship between the expression of NGAL and that of pathogenic cytokines and cancer-related genes including cyclooxygenase-2 (COX-2), E-cadherin, β-catenin, and vimentin in patients with endometrial disorders. NGAL expression was examined by Western blotting, immunohistochemistry, and reverse-transcription polymerase chain reaction (RT-PCR) in hyperplasia and adenomyosis biopsy samples. Immunohistochemistry demonstrated the occurrence of NGAL in glandular epithelial cells but not in the stromal cells of hyperplasia biopsy samples. NGAL protein and mRNA expression were significantly greater in endometrial hyperplasia than in endometrial adenomyosis. Although our data showed no difference in pathogenic cytokines between patients with endometrial hyperplasia and endometrial adenomyosis, we observed high expression levels of COX-2, β-catenin, vimentin, and E-cadherin in patients with endometrial hyperplasia. NGAL mRNA expression correlated positively with COX-2 and E-cadherin mRNA expression (r = 0.41 and r = 0.57, respectively), but correlated negatively with vimentin and β-catenin mRNA expression (r = −0.42 and r = −0.61, respectively). Our data suggest that NGAL is up-regulated in patients with endometrial hyperplasia to prevent the transition from hyperplasia to carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    PubMed  CAS  Google Scholar 

  2. Liu Q, Nilsen-Hamilton M (1995) Identification of a new acute phase protein. J Biol Chem 270:22565–22570

    PubMed  CAS  Google Scholar 

  3. Liu Q, Ryon J, Nilsen-Hamilton M (1997) Uterocalin: a mouse acute phase protein expressed in the uterus around birth. Mol Reprod Dev 46:507–514

    PubMed  CAS  Google Scholar 

  4. Moniaux N, Chakraborty S, Yalniz M, Gonzalez J, Shostrom VK, Standop J, Lele SM, Ouellette M, Pour PM, Sasson AR, Brand RE, Hollingsworth MA, Jain M, Batra SK (2008) Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Br J Cancer 98:1540–1547

    PubMed  CAS  Google Scholar 

  5. Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A (2008) Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat 108:389–397

    PubMed  CAS  Google Scholar 

  6. Lim R, Ahmed N, Borregaard N, Riley C, Wafai R, Thompson EW, Quinn MA, Rice GE (2007) Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelial-mesenchymal transition. Int J Cancer 120:2426–2434

    PubMed  CAS  Google Scholar 

  7. Yang J, Moses MA (2009) Lipocalin 2: a multifaceted modulator of human cancer. Cell Cycle 8:1–6

    CAS  Google Scholar 

  8. Roudkenar MH, Halabian R, Ghasemipour Z, Roushandeh AM, Rouhbakhsh M, Nekogoftar M, Kuwahara Y, Fukumoto M, Shokrgozar MA (2008) Neutrophil gelatinase-associated lipocalin acts as a protective factor against H2O2 toxicity. Arch Med Res 39:560–566

    PubMed  CAS  Google Scholar 

  9. Huang HL, Chu ST, Chen YH (1999) Ovarian steroids regulate 24p3 expression in mouse uterus during the natural estrous cycle and the preimplantaion period. J Endocrinol 162:11–19

    PubMed  CAS  Google Scholar 

  10. Lin HH, Li WW, Lee YC, Chu ST (2007) Apoptosis induced by uterine 24p3 protein in endometrial carcinoma cell line. Toxicology 234:203–215

    PubMed  CAS  Google Scholar 

  11. Salamonsen LA, Lathbury L (2000) Endometrial leukocytes and menstruation. Hum Reprod Update 6:16–27

    PubMed  CAS  Google Scholar 

  12. Kayisli UA, Mahutte NG, Arici A (2002) Uterine chemokines in reproductive physiology and pathology. AJRI Am J Reprod Immunol Microbiol 47:213–221

    Google Scholar 

  13. Masafumi K, Takako O, Michio U (2004) The relationship between endometrial carcinoma and coexistent adenomyosis uteri, endometriosis external and myoma uteri. Can Diet Prevent 28:94–98

    Google Scholar 

  14. Boruban MC, Altundag K, Kilic GS, Blankstein J (2008) From endometrial hyperplasia to endometrial cancer: insight into the biology and possible medical preventive measure. Eur J Can Prev 17:133–138

    CAS  Google Scholar 

  15. Cakmakoglu BA, Attar R, Kahraman OT, Dalan AB, Iyibozkurt AC, Karateke A, Attar E (2010) Cyclooxygenase-2 gene and epithelial ovarian carcinoma risk. Mol Biol Rep 38(5):3481–3486

    Google Scholar 

  16. Fujiwaki R, Lida K, Kanasaki H, Ozaki T, Hata K, Miyazaki K (2002) Cyclooxygenase-2 expression in endometrial cancer: correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Hum Pathol 33:213–219

    PubMed  CAS  Google Scholar 

  17. Orejuela FJ, Ramondetta LM, Smith J, Brown J, Lemos LB, Li Y, Hollier LM (2005) Estrogen and progesterone receptors and cyclooxygenase-2 expression in endometrial hyperplasia, and normal endometrium. Gynecol Oncol 97:483–488

    PubMed  CAS  Google Scholar 

  18. Fosslein E (2001) Molecular pathology of cyclooxygenase-2 in cancer-induced angiogenesis. Ann Clin Lab Sci 31:325–348

    Google Scholar 

  19. Bakhle YS (2001) COX-2 and cancer: a new approach to an old problem. Brit J Pharmacol 134:1137–1150

    CAS  Google Scholar 

  20. Geert B, Frans VR (2001) The E-cadherin/β-catenin complex an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 3:289–293

    Google Scholar 

  21. Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, Strong RK, Zurakowski D, Moses MA (2009) Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci USA 106:3913–3918

    PubMed  CAS  Google Scholar 

  22. Cowling VH, Cole MD (2007) E-cadherin repression contributes to c-myc-induced epithelial cell transformation. Oncogene 26:3582–3586

    PubMed  CAS  Google Scholar 

  23. Chen L, Chen W, Zhao L, Yu HZ, Li X (2009) Immunoscreening of urinary bladder cancer cDNA library and identification of potential tumor antigen. World J Urol 27:107–112

    PubMed  CAS  Google Scholar 

  24. Iannetti A, Pacifico F, Acquaviva R, Lavorgna A, Crescenzi E, Vascotto C, Tell G, Salzano AM, Scaloni A, Vuttariello E, Chiappetta G, Formisano S, Leonardi A (2008) The neutrophil gelatinase-associated lipocalin (NGAL), a NF-kappaB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc Natl Acad Sci USA 105:14058–14063

    PubMed  CAS  Google Scholar 

  25. Arlinghaus R, Leng X (2008) Requirement of lipocalin 2 for chronic myeloid leukemia. Leuk Lymphoma 49:600–603

    PubMed  CAS  Google Scholar 

  26. Leng X, Lin H, Ding T, Wang Y, Wu Y, Klumpp S, Sun T, Zhou Y, Monaco P, Belmont J, Aderem A, Akira S, Strong R, Arlinghaus R (2008) Lipocalin 2 is required for BCR-ABL-induced tumorigenesis. Oncogene 27:6110–6119

    PubMed  CAS  Google Scholar 

  27. Hu L, Hittelman W, Lu T, Ji P, Arlinghaus R, Shmulerich I, Hamilton BR, Zhang W (2009) NGAL decrease E-cadherin-mediated cell-cell adhesion and increase cell mobility and invasion through Rac1 in colon carcinoma cells. Lab Invest 17:1–18

    CAS  Google Scholar 

  28. Munday JS, Brennan MM, Kiupel M (2006) Altered expression of β-catenin, E-cadherin, COX-2, and p53 protein by ovine intestinal adenocarcinoma cells. Vet Pathol 43:613–621

    PubMed  CAS  Google Scholar 

  29. Jeong J-W, Lee HS, Frano HL, Broaddus RR, Taketo MM, Tsai SY, Lydon JP, DeMayo FJ (2009) β-catenin mediates glandular formation and dysregulation of β-catenin induces hyperplasia formation in the murine uterus. Oncogene 28:31–40

    PubMed  CAS  Google Scholar 

  30. Ashihara K, Saito T, Mizumoto H, Nishimura M, Tanaka R, Kudo R (2002) Mutation of β-catenin gene in endometrial cancer but not in associated hyperplasia. Med Electron Microsc 35:9–15

    PubMed  CAS  Google Scholar 

  31. Giles C, Thompson EW (1996) The epithelial to mesenchymal transition and metastatic progression in carcinoma. Breast J 2:83–96

    Google Scholar 

  32. Tong Z, Kunnumakkara AB, Wang H, Matsuo Y et al (2008) NGAL: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res 68:100–108

    Google Scholar 

  33. Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM (2004) Cyclooxygenases in cancer: progression and perspective. Cancer Lett 215:1–20

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin-Tak Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, CJ., Huang, Y.H., Au, HK. et al. The cancer marker neutrophil gelatinase-associated lipocalin is highly expressed in human endometrial hyperplasia. Mol Biol Rep 39, 1029–1036 (2012). https://doi.org/10.1007/s11033-011-0828-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0828-9

Keywords

Navigation