Skip to main content
Log in

Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We have cloned a Na+/H+ antiporter gene (GenBank accession no EF440291, PtNHA1) from Puccinellia tenuiflora (so-called alkali grass in Chinese) roots under NaCl salt stress. Its cDNA is 3775 bp and contains a 3414 bp open reading frame. The amino acid sequences of PtNHA1 show high identities with a putative plasma membrane Na+/H+ antiporter from wheat. PtNHA1 was predicted to contain 11 hypothetical transmembrane domains in the N-terminal part and to localize in the plasma membrane. Genomic DNA gel blot analysis shows that PtNHA1 is a single-copy gene in the alkali grass genome. PtNHA1 is highly expressed in leaves, roots and shoots by RNA gel blot analysis. Furthermore, PtNHA1 gene expression of alkali grass was clearly up-regulated by NaCl salt stress. Overexpression of PtNHA1 in Arabidopsis resulted in enhanced tolerance of transgenic plants to NaCl stress. The ion contents analysis shows that, compared with the wild-type (WT), less Na+ and more K+ were accumulated in transgenic plants under NaCl stress. The results indicate that PtNHA1 play an important role in NaCl salt stress. Additionally, compared with the WT, total activities of ascorbate peroxidase (APX) and catalase (CAT), two key reactive oxygen species (ROS) detoxifying enzymes were high in transgenic plants under salt stress, respectively. The transcript levels of two APX genes (Apx1, s/mApx) and two CAT genes (Cat1, Cat2) in transgenic plants were higher than those in WT. This suggests that overexpression of PtNHA1 results in enhanced ROS-scavenging enzymes of transgenic plants under NaCl salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  2. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  3. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  4. Apse MP, Aharon GS, Sneddon WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  5. Zhang HX, Hodson J, Williams JP, Blumwald E (2001) Engineering salt tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  PubMed  CAS  Google Scholar 

  6. Guan B, Hu YZ, Zeng YL, Wang Y, Zhang FC (2010) Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep. doi:10.1007/s11033-010-0307-8

  7. Jha A, Joshi M, Yadav NS, Agarwal PK, Jha B (2010) Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep. doi:10.1007/s11033-010-0318-5

  8. Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  PubMed  CAS  Google Scholar 

  9. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS 1 controls long distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  10. Shabala L, Cuin TA, Newman I, Shabala S (2005) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222:1041–1050

    Article  PubMed  CAS  Google Scholar 

  11. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS 1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  PubMed  CAS  Google Scholar 

  12. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS 1 , a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS 2 and SOS 3 . Proc Natl Acad Sci USA 99:8436–8441

    Article  PubMed  CAS  Google Scholar 

  13. Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  PubMed  CAS  Google Scholar 

  14. Katiyar-Agarwal S, Zhu JH, Kim KM, Agarwal M, Fu XM, Huang A, Zhu J-K (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:18816–18821

    Article  PubMed  CAS  Google Scholar 

  15. Verslues PE, Batelli G, Grillo S, Agius F, Kim Y-S, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu J-K (2007) Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol Cell Biol 27:7771–7780

    Article  PubMed  CAS  Google Scholar 

  16. Zhu YJ, Zhang Y, Hu ZZ, Yan SG (2001) Studies on the microscopic structure of Puccinellis tenuiflora roots under different salinity stress. Grassland of China 1:37–40

    Google Scholar 

  17. Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC (2004) Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. J Exp Bot 55:939–949

    Article  PubMed  CAS  Google Scholar 

  18. Wang YC, Chua Y-G, Liu GF, Wang M-H, Jiang J, Hou YJ, Qu GZ, Yang CP (2007) Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library. J Plant Physiol 164:78–89

    Article  PubMed  CAS  Google Scholar 

  19. Wang YC, Yang CP, Liu GF, Jiang J (2007) Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline-alkali stress. Plant Physiol Biochem 45:567–576

    Article  PubMed  CAS  Google Scholar 

  20. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  21. Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  22. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  23. Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  Google Scholar 

  24. Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  PubMed  CAS  Google Scholar 

  25. Xu HX, Jiang XY, Zhan KH, Cheng XY, Chen XJ, Pardo JM, Cui DQ (2008) Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Arch Biochem Biophys 473:8–15

    PubMed  CAS  Google Scholar 

  26. Wang WX, Vinocur B, Altman A (2003) A plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  27. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

  28. Wu SJ, Lei D, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627

    Article  PubMed  CAS  Google Scholar 

  29. Niu XM, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed  CAS  Google Scholar 

  30. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  PubMed  CAS  Google Scholar 

  31. Gao XH, Ren ZH, Zhao YX, Zhang H (2003) Overexpression of SOD2 Increases salt tolerance of Arabidopsis. Plant Physiol 133:1873–1881

    Article  PubMed  CAS  Google Scholar 

  32. Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353

    Article  PubMed  CAS  Google Scholar 

  33. Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    Article  PubMed  CAS  Google Scholar 

  34. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1; 5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  PubMed  CAS  Google Scholar 

  35. Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937

    Article  PubMed  CAS  Google Scholar 

  36. Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive Na+/H+ antiporter during salinity stress. Plant Physiol 136:2548–2555

    Article  PubMed  CAS  Google Scholar 

  37. Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK (2004) Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the Salt-Overly-Sensitive (SOS) pathway. J Biol Chem 279:207–215

    Article  PubMed  CAS  Google Scholar 

  38. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Physiol 55:373–399

    CAS  Google Scholar 

  39. Inze D, Montagu MV (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  CAS  Google Scholar 

  40. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Fundamental Research Funds for the Central Universities (DL09EA01) and Youth Science Research Foundation of Harbin City (2005AFQXJ024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1769 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yang, R., Wang, B. et al. Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38, 4813–4822 (2011). https://doi.org/10.1007/s11033-010-0624-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0624-y

Keywords

Navigation