Skip to main content
Log in

Effects of MicroRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short non-coding RNA that post-transcriptionally regulates gene expression. miRNA-143 has been proposed to play a role in the differentiation of preadipocytes. However, effects and mechanism of miRNA-143 in the differentiation of mammals intramuscular adipocytes is unknown. In this study, the fibroblast-like preadipocytes were cultured from the marbling muscle tissue of holstein steers by the ceiling culture method. The in vitro studies showed that the fibroblast-like preadipocytes could differentiated into mature adipocytes with up-regulated expression of miRNA-143. Furthermore, the transfection of the fibroblast-like preadipocytes with miRNA-143 antisense inhibitor induced a significant suppression of differentiation, and indicated by decreased storage of lipid droplets and down-regulated expression of key adipocytes regulatory genes such as CCAAT/enhancer-binding protein-α (C/EBPα) and fatty acid binding proteins-4 (FABP-4). On the contrary, cells proliferation were increased with miRNA-143 inhibitor transfection. Taken together, our study provide the first evidence for stimulation of endogenous miRNA-143 in the differentiation of bovine intramuscular fat, which in part contribute to the regulated expression of adipocyte genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130:3122S–3126S

    PubMed  CAS  Google Scholar 

  2. Feve B (2005) Adipogenesis: cellular and molecular aspects. Best Pract Res Clin Endocrinol Metab 19:483–499

    Article  PubMed  CAS  Google Scholar 

  3. Aso H, Abe H, Nakajima I et al (1995) A preadipocyte clonal line from bovine intramuscular adipose tissue: non expression of GLUT-4 protein during adipocyte differentiation. Biochem Biophys Res Commun 213:369–375

    Article  PubMed  CAS  Google Scholar 

  4. Kim HS, Hausman GJ, Hausman DB et al (2000) The expression of peroxisome proliferator-activated receptor gamma in pig fetal tissue and primary stromal-vascular cultures. Obes Res 8:83–88

    Article  PubMed  CAS  Google Scholar 

  5. Matsubara Y, Sato K, Ishii H et al (2005) Changes in mRNA expression of regulatory factors involved in adipocyte differentiation during fatty acid induced adipogenesis in chicken. Comp Biochem Physiol A Mol Integr Physiol 141:108–115

    Article  PubMed  Google Scholar 

  6. Roeber DL, McKenna DR, Bates PK et al (2002) The 2000 national beef quality audits: views of producers, packers, and merchandisers on current quality characteristics of beef. Prof Anim Sci 18:112–119

    Google Scholar 

  7. Nishimura T, Hattori A, Takahashi K (1999) Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. J Anim Sci 77:93–104

    PubMed  CAS  Google Scholar 

  8. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  PubMed  CAS  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  10. Valencia-Sanchez MA, Liu J, Hannon GJ et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  PubMed  CAS  Google Scholar 

  11. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  12. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    Article  PubMed  CAS  Google Scholar 

  13. Zhu Z, He J, Jia X et al (2010) MicroRNA-25 functions in regulation of pigmentation by targeting the transcription factor MITF in alpaca (Lama pacos) skin melanocytes. Domest Anim Endocrinol 38:200–209

    Article  PubMed  CAS  Google Scholar 

  14. Krützfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  Google Scholar 

  15. Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    Article  PubMed  CAS  Google Scholar 

  16. Clop A, Marcq F, Takeda H et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    Article  PubMed  CAS  Google Scholar 

  17. Esau C, Kang X, Peralta E et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361–52365

    Article  PubMed  CAS  Google Scholar 

  18. Kajimoto K, Naraba H, Iwai N (2006) MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 12:1626–1632

    Article  PubMed  CAS  Google Scholar 

  19. Takanabe R, Ono K, Abe Y et al (2008) Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun 376:728–732

    Article  PubMed  CAS  Google Scholar 

  20. Tomii R, Kurome M, Ochiai T et al (2005) Production of cloned pigs by nuclear transfer of preadipocytess established from adult mature adipocytes. Cloning Stem Cells 7:279–288

    Article  PubMed  CAS  Google Scholar 

  21. Hauner H, Entenmann G, Wabitsch M et al (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 84:1663–1670

    Article  PubMed  CAS  Google Scholar 

  22. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  23. Li HX, Luo X, Liu RX et al (2008) Roles of Wnt/beta-catenin signaling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells. Mol Cell Endocrinol 291:116–124

    Article  PubMed  CAS  Google Scholar 

  24. Géloën A, Roy PE, Bukowiecki LJ (1989) Regression of white adipose tissue in diabetic rats. Am J Physiol 257:E547–E553

    PubMed  Google Scholar 

  25. Gardan D, Louveau I, Gondret F (2007) Adipocyte- and heart-type fatty acid binding proteins are both expressed in subcutaneous and intramuscular porcine (Sus scrofa) adipocytes. Comp Biochem Physiol B Biochem Mol Biol 148:14–19

    Article  PubMed  Google Scholar 

  26. Insausti K, Beriain MJ, Alzueta MJ et al (2004) Lipid composition of the intramuscular fat of beef from Spanish cattle breeds stored under modified atmosphere. Meat Sci 66:639–646

    Article  CAS  Google Scholar 

  27. Aass L, Fristedt CG, Gresham JD (2009) Ultrasound prediction of intramuscular fat content in lean cattle. Livest Sci 125:177–186

    Article  Google Scholar 

  28. Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31000994), the Doctoral Program Foundation of Institutions of Higher Education of China (No. 20090097120009) and Nanjing Agricultural University Scientific & Technological Innovation Fund for Youths (No. KJ09012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiXia Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, Z., Zhou, X. et al. Effects of MicroRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes. Mol Biol Rep 38, 4273–4280 (2011). https://doi.org/10.1007/s11033-010-0550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0550-z

Keywords

Navigation