Skip to main content

Advertisement

Log in

Interleukin-21 as a potential therapeutic target for systemic lupus erythematosus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Interleukin-21(IL-21) is the most recently discovered member of the type-I cytokine family. Structurally, IL-21 shows homology to IL-2, 4, and 15 proteins. It has a variety of effects on the immune system, including B cell activation, plasma cell differentiation, and immunoglobulin production. Many previous studies have identified that IL-21 was associated with different autoimmune and inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. In addition, recent work has explored the role of IL-21 in systemic lupus erythematosus (SLE). Elevated expression of IL-21 was found in the sera of patients and mice with SLE. Moreover, association of IL-21 and IL-21R polymorphisms with susceptibility to SLE have been reported. All these findings suggest that IL-21 may have promise as a potential therapeutic target for SLE. In this review, we will discuss the biological features of IL-21, the IL-21 signaling and its potential role in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook HT, Botto M (2006) Mechanisms of disease: the complement system and the pathogenesis of systemic lupus erythematosus. Nat Clin Pract Rheumatol 2:330–337

    Article  PubMed  CAS  Google Scholar 

  2. Parrish-Novak J, Dillon SR, Nelson A et al (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57–63

    Article  PubMed  CAS  Google Scholar 

  3. Coquet JM, Kyparissoudis K, Pellicci DG et al (2007) IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol 178:2827–2834

    PubMed  CAS  Google Scholar 

  4. Monteleone G, Pallone F, Macdonald TT (2009) Interleukin-21 (IL-21)-mediated pathways in T cell-mediated disease. Cytokine Growth Factor Rev 20:185–191

    Article  PubMed  CAS  Google Scholar 

  5. Spolski R, Leonard WJ (2008) The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr Opin Immunol 20:295–301

    Article  PubMed  CAS  Google Scholar 

  6. Sawalha AH, Kaufman KM, Kelly JA et al (2008) Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis 67:458–461

    Article  PubMed  CAS  Google Scholar 

  7. Webb R, Merrill JT, Kelly JA et al (2009) A polymorphism within IL21R confers risk for systemic lupus erythematosus. Arthritis Rheum 60:2402–2407

    Article  PubMed  CAS  Google Scholar 

  8. Kuchen S, Robbins R, Sims GP et al (2007) Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4 + T cell-B cell collaboration. J Immunol 179:5886–5896

    PubMed  CAS  Google Scholar 

  9. Ozaki K, Spolski R, Ettinger R et al (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173:5361–5371

    PubMed  CAS  Google Scholar 

  10. Yang L, Anderson DE, Baecher-Allan C et al (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454:350–352

    Article  PubMed  CAS  Google Scholar 

  11. Maeda M, Yanagawa Y, Iwabuchi K et al (2007) IL-21 enhances dendritic cell ability to induce interferon-gamma production by natural killer T cells. Immunobiology 212:537–547

    Article  PubMed  CAS  Google Scholar 

  12. Ozaki K, Kikly K, Michalovich D et al (2000) Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci USA 97:11439–11444

    Article  PubMed  CAS  Google Scholar 

  13. Monteleone G, Pallone F, Macdonald TT (2009) Interleukin-21 as a new therapeutic target for immune-mediated diseases. Trends Pharmacol Sci 30:441–447

    Article  PubMed  CAS  Google Scholar 

  14. Caruso R, Fina D, Peluso I et al (2007) A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3 alpha, by gut epithelial cells. Gastroenterology 132:166–175

    Article  PubMed  CAS  Google Scholar 

  15. Monteleone G, Caruso R, Fina D et al (2006) Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut 55:1774–1780

    Article  PubMed  CAS  Google Scholar 

  16. Jungel A, Distler JH, Kurowska-Stolarska M et al (2004) Expression of interleukin-21 receptor, but not interleukin-21, in synovial fibroblasts and synovial macrophages of patients with rheumatoid arthritis. Arthritis Rheum 50:1468–1476

    Article  PubMed  Google Scholar 

  17. Distler JH, Jungel A, Kowal-Bielecka O et al (2005) Expression of interleukin-21 receptor in epidermis from patients with systemic sclerosis. Arthritis Rheum 52:856–864

    Article  PubMed  CAS  Google Scholar 

  18. Hiromura Y, Kishida T, Nakano H et al (2007) IL21 administration into the nostril alleviates murine allergic rhinitis. J Immunol 179:7157–7165

    PubMed  CAS  Google Scholar 

  19. Ettinger R, Kuchen S, Lipsky PE (2008) The role of IL-21 in regulating B-cell function in health and disease. Immunol Rev 223:60–86

    Article  PubMed  CAS  Google Scholar 

  20. Caven TH, Shelburne A, Sato J et al (2005) IL-21 dependent IgE production in human and mouse in vitro culture systems is cell density and cell division dependent and is augmented by IL-10. Cell Immunol 238:123–134

    Article  PubMed  CAS  Google Scholar 

  21. Mehta DS, Wurster AL, Grusby MJ (2004) Biology of IL-21 and the IL-21 receptor. Immunol Rev 202:84–95

    Article  PubMed  CAS  Google Scholar 

  22. Leonard WJ, Zeng R, Spolski R (2008) Interleukin 21: a cytokine/cytokine receptor system that has come of age. J Leukoc Biol 84:348–356

    Article  PubMed  CAS  Google Scholar 

  23. Toomey JA, Gays F, Foster D et al (2003) Cytokine requirements for the growth and development of mouse NK cells in vitro. J Leukoc Biol 74:233–242

    Article  PubMed  CAS  Google Scholar 

  24. Spolski R, Leonard WL (2007) Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 26:57–79

    Article  Google Scholar 

  25. Gagnon J, Ramanathan S, Leblanc C et al (2007) Regulation of IL-21 signaling by suppressor of cytokine signaling-1 (SOCS1) in CD8 (+) T lymphocytes. Cell Signal 19:806–816

    Article  PubMed  CAS  Google Scholar 

  26. Zeng R, Spolski R, Casas E et al (2007) The molecular basis of IL-21-mediated proliferation. Blood 109:4135–4142

    Article  PubMed  CAS  Google Scholar 

  27. Strengell M, Matikainen S, Siren J et al (2003) IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol 170:5464–5469

    PubMed  CAS  Google Scholar 

  28. Suto A, Wurster AL, Reiner SL et al (2006) IL-21 inhibits IFN-γ production in developing Th1 cells through the repression of Eomesodermin expression. J Immunol 177:3721–3727

    PubMed  CAS  Google Scholar 

  29. Ettinger R, Sims GP, Fairhurst AM et al (2005) IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol 175:7867–7879

    PubMed  CAS  Google Scholar 

  30. Pan HF, Ye DQ, Li XP (2008) Type 17 T-helper cells might be a promising therapeutic target for systemic lupus erythematosus. Nat Clin Pract Rheumatol 4:352–353

    PubMed  CAS  Google Scholar 

  31. Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and 23 pathways. Nat Immunol 8:967–974

    Article  PubMed  CAS  Google Scholar 

  32. Korn T, Bettelli E, Gao W et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H) 17 cells. Nature 448:484–487

    Article  PubMed  CAS  Google Scholar 

  33. Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483

    Article  PubMed  CAS  Google Scholar 

  34. Bubier JA, Sproule TJ, Foreman O et al (2009) A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc Natl Acad Sci USA 106:1518–1523

    Article  PubMed  CAS  Google Scholar 

  35. Vinuesa CG, Cook MC, Angelucci C et al (2005) A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435:452–458

    Article  PubMed  CAS  Google Scholar 

  36. Mitoma H, Horiuchi T, Kimoto Y et al (2005) Decreased expression of interleukin-21 receptor on peripheral B lymphocytes in systemic lupus erythematosus. Int J Mol Med 16:609–615

    PubMed  CAS  Google Scholar 

  37. Grammer AC, Lipsky PE (2003) B cell abnormalities in systemic lupus erythematosus. Arthritis Res Ther 5:S22–S27

    Article  PubMed  Google Scholar 

  38. Wei C, Anolik J, Cappione A et al (2007) A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 178:6624–6633

    PubMed  CAS  Google Scholar 

  39. Herber D, Brown TP, Liang S et al (2007) IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R. Fc reduces disease progression. J Immunol 178:3822–3830

    PubMed  CAS  Google Scholar 

  40. Bubier JA, Bennett SM, Sproule TJ et al (2007) Treatment of BXSB-Yaa mice with IL21R-Fc fusion protein minimally attenuates systemic lupus erythematosus. Ann NY Acad Sci 1110:590–601

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the key program of National Natural Science Foundation of China (30830089).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Qing Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Pan, HF., Cen, H. et al. Interleukin-21 as a potential therapeutic target for systemic lupus erythematosus. Mol Biol Rep 38, 4077–4081 (2011). https://doi.org/10.1007/s11033-010-0527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0527-y

Keywords

Navigation