Skip to main content

Advertisement

Log in

Retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 are induced but not essential for dengue virus induced type I interferon response

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dengue viruses (DENVs) are important human pathogens that cause mild dengue fever, and severe dengue hemorrhagic fever/dengue shock syndrome, and no vaccine or antiviral therapy are currently available. At the initial stage of DENV infection, host pattern recognition receptors are responsible for sensing viral proteins or nucleic acids and initiating innate antiviral responses, including the activation of type I interferon (IFN) and proinflammatory cytokines. Two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), are recently identified as cytoplasmic PPRs for virus infection. Here, in this study the involvement of RIG-I and MDA5 in DENV-induced IFN-β response A549 cells were investigated. DENV infection readily up-regulated RIG-I expression, activated IRF-3 and RIG-I mRNA transcription, and induced the production of IFN-β in A549 cells in a strain- and serotype-independent manner. While gene silencing of RIG-I by small interfering RNAs failed to significantly inhibit IFN-β production induced by DENV infection. Further experiments demonstrated that MDA5 was also induced by DENV infection, and MDA5 knockout did not block DENV induced IFN-β production in A549 cells. Our results demonstrated that both RIG-I and MDA5 were induced but neither of the two was essential for DENV induced IFN IFN-β response in A549 cells. These findings suggest that innate immune pathway are involved in the recognition of DENV by human non-immune cells, and provide insights for the understanding of the molecular mechanism for DENV-induced antiviral response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Halstead SB (2007) Dengue. Lancet 370:1644–1652

    Article  PubMed  Google Scholar 

  2. Kyle JL, Harris E (2008) Global spread and persistence of dengue. Annu Rev of Microbiol 62:71–92

    Article  CAS  Google Scholar 

  3. Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:S98–S109

    Article  PubMed  CAS  Google Scholar 

  4. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22

    Article  PubMed  CAS  Google Scholar 

  5. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  6. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    Article  PubMed  CAS  Google Scholar 

  7. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  8. Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11:604–615

    Article  PubMed  CAS  Google Scholar 

  9. Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, Libraty DH (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177:7114–7121

    PubMed  CAS  Google Scholar 

  10. Sun P, Fernandez S, Marovich MA, Palmer DR, Celluzzi CM, Boonnak K, Liang Z, Subramanian H, Porter KR, Sun W, Burgess TH (2009) Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. Virology 383:207–215

    Article  PubMed  CAS  Google Scholar 

  11. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    Article  PubMed  CAS  Google Scholar 

  12. Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S, Randall RE (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-b promoter. Proc Natl Acad Sci USA 101:17264–17269

    Article  PubMed  CAS  Google Scholar 

  13. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337

    Article  PubMed  CAS  Google Scholar 

  14. Halstead SB (1989) Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis 11:S830–S839

    Article  PubMed  Google Scholar 

  15. Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS (2000) Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6:816–820

    Article  PubMed  CAS  Google Scholar 

  16. Suksanpaisan L, Cabrera-Hernandez A, Smith DR (2007) Infection of human primary hepatocytes with dengue serotype 2. J Med Virol 79:300–309

    Article  PubMed  CAS  Google Scholar 

  17. Warke RV, Xhaja K, Martin KJ, Fournier MF, Shaw SK, Brizuela N, de Bosch N, Lapointe D, Ennis FA, Rothman AL, Bosch I (2003) Dengue virus induce novel changes in gene expression of human umbilical vein endothelial cells. J Virol 77:11822–11832

    Article  PubMed  CAS  Google Scholar 

  18. Kurane I, Ennis FA (1988) Production of interferon alpha by dengue virus-infected human monocytes. J Gen Virol 69:445–449

    Article  PubMed  CAS  Google Scholar 

  19. Lee YR, Su CY, Chow NH, Lai WW, Lei HY, Chang CL, Chang TY, Chen SH, Lin YS, Yeh TM, Liu HS (2007) Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Res 126:216–225

    Article  PubMed  CAS  Google Scholar 

  20. Jessie K, Fong MY, Devi S, Lam SK, Wong KT (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189:1411–1418

    Article  PubMed  Google Scholar 

  21. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005) Cell type specific involvement of RIG-I in antiviral response. Immunity 23:19–28

    Article  PubMed  CAS  Google Scholar 

  22. Umareddy I, Tang KF, Vasudevan SG, Devi S, Hibberd ML, Gu F (2008) Dengue virus regulates type I interferon signalling in a strain-dependent manner in human cell lines. J Gen Virol 89:3052–3062

    Article  PubMed  CAS  Google Scholar 

  23. Fink J, Gu F, Ling L, Tolfvenstam T, Olfat F, Chin KC, Aw P, George J, Kuznetsov VA, Schreiber M, Vasudevan SG, Hibberd ML (2007) Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1:e86

    Article  PubMed  Google Scholar 

  24. Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100:14333–14338

    Article  PubMed  CAS  Google Scholar 

  25. Siren J, Imaizumi T, Sarkar D, Pietila T, Noah DL, Lin R, Hiscott J, Krug RM, Fisher PB, Julkunen I, Matikainen S (2006) Retinoic acid inducible gene-I and mda-5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes Infect 8:2013–2020

    Article  PubMed  CAS  Google Scholar 

  26. Berghall H, Siren J, Sarkar D, Julkunen I, Fisher PB, Vainionpaa R, Matikainen S (2006) The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokine. Microbes Infect 8:2138–2144

    Article  PubMed  Google Scholar 

  27. Sabbah A, Bose S (2009) Retinoic acid inducible gene I activates innate antiviral response against human parainfluenza virus type 3. Virol J 6:200

    Article  PubMed  Google Scholar 

  28. Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467

    Article  PubMed  CAS  Google Scholar 

  29. Mathew A, Rothman AL (2008) Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev 225:300–313

    Article  PubMed  CAS  Google Scholar 

  30. Chaturvedi UC, Agarwal R, Elbishbishi EA, Mustafa AS (2000) Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunol Med Micrbiol 28:183–188

    Article  CAS  Google Scholar 

  31. Nielsen DG (2009) The relationship of interacting immunological components in dengue pathogenesis. Virol J 6:211

    Article  PubMed  Google Scholar 

  32. Kurane I, Innis B, Nimmannitya S, Nisalak A, Meager A, Ennis FA (1993) High levels of interferon alpha in the sera of children with dengue virus infection. Am J Trop Med Hyg 48:222–229

    PubMed  CAS  Google Scholar 

  33. Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E (2004) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78:2701–2710

    Article  PubMed  CAS  Google Scholar 

  34. Johnson AJ, Roehrig JT (1999) New mouse model for dengue virus vaccine testing. J Virol 73:783–786

    PubMed  CAS  Google Scholar 

  35. Simmons CP, Popper S, Dolocek C, Chau TN, Griffiths M, Dung NT, Long TH, Hoang DM, Chau NV, Thao le TT, Hien TT, Relman DA, Farrar J (2007) Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever. J Infect Dis 195:1097–1107

    Article  PubMed  CAS  Google Scholar 

  36. Chen LC, Ye TM, Wu HN, Lin YY, Shyu HW (2008) Dengue virus infection induces passive release of high mobility group box 1 protein by epithelial cells. J Infect 56:143–150

    Article  PubMed  Google Scholar 

  37. Conceical TM, El-Bacha T, Villa-Boas CSA, Coello G, Ramirez J, Montero-Lomeli M, Da Poian AT (2010) Gene expression analysis during dengue virus infection in HepG2 cells reveals virus control of innate immune response. J Infect 60:65–75

    Article  Google Scholar 

  38. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  PubMed  CAS  Google Scholar 

  39. Chang TH, Liao CL, Lin YL (2006) Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3 K-dependent NF-kappaB activation. Microbes Infect 8:157–171

    Article  PubMed  CAS  Google Scholar 

  40. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, García-Sastre A, Katze MG, Gale M Jr (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335–345

    Article  PubMed  CAS  Google Scholar 

  41. de Kruif MD, Setiati TE, Mairuhu AT, Koraka P, Aberson HA, Spek CA, Osterhaus AD, Reitsma PH, Brandjes DP, Soemantri A, van Gorp EC (2008) Differential gene expression changes in children with severe dengue virus infections. PLoS Negl Trop Dis 2:e215

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Yun-Ling Wei and Shun-Ya Zhu for technical assistance, and Prof. Pei-Ying Yang for helpful discussion. We thank T. Maniatis (Harvard University, USA), T. Fujita (Kyoto University, Japan) for providing the plasmids. This work was supported, in part, by the National Natural Science Foundation of China (No. 30600530 and 30972613) and the Major Special Program of National Science and Technology of China (2008ZX10004-014 and 2009ZX10004-204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E-De Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, CF., Zhao, H., Liu, ZY. et al. Retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 are induced but not essential for dengue virus induced type I interferon response. Mol Biol Rep 38, 3867–3873 (2011). https://doi.org/10.1007/s11033-010-0502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0502-7

Keywords

Navigation