Skip to main content
Log in

Mutations in methylenetetrahydrofolate reductase and in cysthationine beta synthase: is there a link to homocysteine levels in peripheral arterial disease?

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Peripheral arterial disease (PAD) is an atherosclerotic disturbance characterized by a progressive obstruction of lower limb arteries. Many risk factors associated with PAD development have being reported in the literature. The present study aimed to investigate whether mutations in the methylenetetrahydrofolate reductase (MTHFR) or in the cystathionine beta synthase (CBS) genes are associated with higher levels of homocysteine and the risk of PAD in patients from Brazil. This study analyzed 39 patients with PAD and 32 without PAD in whom risk factors and C677T mutations in the MTHFR gene and both 844ins68 and T833C mutations in the CBS gene were investigated. Although higher levels of homocysteine could be observed in patients with PAD compared to controls, no association between the increase of homocysteine and the frequency of C677T, 844ins68, and T833C mutations could be observed. The results suggest that these mutations do not appear to be related to either homocysteine levels or the development of the disease. However, hyperhomocysteinemia and smoking are important factors in PAD development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hiatt WR, Hoag S, Hamman RF (1995) Effect of diagnostic criteria on the prevalence of peripheral arterial disease: the San Luis Valley diabetes study. Circulation 91:1472–1479

    PubMed  CAS  Google Scholar 

  2. Schnyder G, Roffi M, Pin R, Flammer Y, Lange H, Eberli FR et al (2001) Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Engl J Med 345:1593–1600

    Article  PubMed  CAS  Google Scholar 

  3. Pasternak RC, Criqui MH, Benjamin EJ, Fowkes FG, Isselbacher EM, McCullough PA et al (2004) Atherosclerotic vascular disease conference: writing group I: epidemiology. Circulation 109:2605–2612

    Article  PubMed  Google Scholar 

  4. TransAtlantic Inter-Society Consensus (TASC) (2000) Management of peripheral vascular disease. Int Angiol 19(Suppl 1):15–28

    Google Scholar 

  5. Bordeaux LM, Reich LM, Hirsch AT (2003) The epidemiology and natural history of peripheral arterial disease. In: Coffman JD, Eberhardt RT (eds) Peripheral arterial disease diagnosis and treatment. Humana press, New Jersey, pp 21–34

    Google Scholar 

  6. Cardwell S, McCarthy M, Martin SC (1998) Hyperhomocysteinaemia, peripheral vascular disease and neointimal hyperplasia in elderly patients. Br J Surg 85:685–715

    Article  Google Scholar 

  7. Boers GH, Smals Ag, Trijbels FJ, Fowler B, Bakkeren JA, Schoonderwaldt HC et al (1985) Heterozygosite for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 313:709–715

    Article  PubMed  CAS  Google Scholar 

  8. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B et al (1991) Hyperhomocystinaemia: an independent risk factor for vascular disease. N Engl J Med 324:1149–1155

    Article  PubMed  CAS  Google Scholar 

  9. Asfar S, Safar H (2007) Homocysteine levels and peripheral arterial occlusive disease: a prospective cohort study and review of the literature. J Cardiovasc Surg 48:601–605

    CAS  Google Scholar 

  10. Garofolo L, Barros N Jr, Miranda F Jr, D’Almeida V, Cardien LC, Ferreira SR (2007) Association of increased levels of homocysteine and peripheral arterial disease in a Japanese-Brazilian population. Eur J Vasc Endovasc Surg 34:23–28

    Article  PubMed  CAS  Google Scholar 

  11. Malinow MR, Kang SS, Taylor L, Wong PW, Coull B, Inahara T et al (1989) Prevalence of hyperhomocysteinemia in patients with peripheral arterial disease. Circulation 79:1180–1188

    PubMed  CAS  Google Scholar 

  12. Brattstrom L, Israelsson B, Norrving B, Bergqvist D, Thörne J, Hultberg B et al (1990) Impaired homocysteine metabolism in early onset cerebral and peripheral occlusive disease. Atherosclerosis 81:51–60

    Article  PubMed  CAS  Google Scholar 

  13. Taylor LM, Defrang RD, Harris EJ, Porter JM (1991) The association of elevated plasma homocysteine with progression of symptomatic peripheral arterial disease. J Vasc Surg 13:128–136

    Article  PubMed  Google Scholar 

  14. Bhargava S, Parakh R, Manocha A, Ali A, Srivastava L (2007) Prevalence of hyperhomocysteinemia in vascular disease: comparative study of thrombotic venous disease vis-à-vis occlusive arterial disease. Vascular 15:149–153

    Article  PubMed  Google Scholar 

  15. Carmody BJ, Arora S, Avena R, Cosby K, Sidawy AN (1999) Folic acid intake at levels available in dietary supplements may prove protective in hyperhomocysteinemia induced atherosclerosis. J Vasc Surg 30:1121–1128

    Article  PubMed  CAS  Google Scholar 

  16. Pyeritz RE (2000) Hereditary risk factors for atherosclerotic occlusive disease. J Vasc Surg 31:1279–1280

    Article  Google Scholar 

  17. Pereira AC, Schettert IT, Morandini Filho AA, Guerra-Shinohara EM, Krieger JE (2004) Methylenetetrahydrofolate reductase (MTHFR) C677T gene variant modulates the homocysteine folate correlation in a mild folate-deficient population. Clin Chim Acta 340:99–105

    Article  PubMed  CAS  Google Scholar 

  18. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  PubMed  CAS  Google Scholar 

  19. Castro R, Rivera I, Ravasco P, Camilo ME, Jakobs C, Blom HJ et al (2003) 5, 10-Methylenotetrahydrofolate reductase 677C-T and 1298 A-C mutations are genetic determinants of elevated homocysteine. QLM 96:297–303

    CAS  Google Scholar 

  20. Aléssio A, Siqueira L, Bydlowski S, Höehr N, Annichino-Bizzacchi J (2008) Polymorphisms in the CBS gene and homocysteine, folate and vitamin B12 levels: association with polymorphisms in the MTHFR and MTRR genes in Brazilian children. Am J Med Genet A146A:2598–2602

    Article  Google Scholar 

  21. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG et al (1995) A candidate genetic risk factor for vascular disease: a commom mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  PubMed  CAS  Google Scholar 

  22. Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325:12002

    Google Scholar 

  23. Guerzoni A, Pavarino-Bertelli E, Godoy M, Graça C, Biselli P, Souza D, Bertollo E (2007) Methylenetetrahydrofolate reductase gene polymorphism and its association with coronary artery disease. Sao Paulo Med J 125:4–8

    Article  PubMed  Google Scholar 

  24. Aras O, Hanson N, Yang F, Tsai M (2000) Influence of 699C→T and 1080C→T polymorphisms of the cystathionine beta-synthase gene on plasma homocysteine levels. Clin Genet 58:455–945

    Article  PubMed  CAS  Google Scholar 

  25. Franco R, Maffei F, Lourenço D, Piccinato C, Morelli V, Thomazini I et al (1998) The frequency of 844ins68 mutation in the cystathionine beta-synthase gene is not increased in patients with venous thrombosis. Haematologica 83:1006–1008

    PubMed  CAS  Google Scholar 

  26. Frosst P, Blom H, Milos R, Goyette P, Shepparó A, Matthews R (1995) A candidate genetic risck factor for vascular disease: a commom mutation in methylenetetrahydrofolate reductase. Nat Genet 10:11–113

    Article  Google Scholar 

  27. Dutta S, Sinha S, Chatoopadhyway A, Gangopadhyay PK, Mukhopadhyay J, Singh M et al (2005) Cystathionine β-synthase T833C/844INS68 polymorphism: a family-based study on mentally retarded children. Behav Brain Funct 26:1–25

    Google Scholar 

  28. Jhee KH, Kruger WD (2005) The role of cystathionine beta-synthase in homocysteine metabolism. Antioxid Redox Signal 7:813–822

    Article  PubMed  CAS  Google Scholar 

  29. Den Heijer M, Lewington S, Clarke R (2005) Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies. J Thromb Haemost 3:292–299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina B. Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, M.E.R.C., das C. L. e Silva, F., Gomes, K.B. et al. Mutations in methylenetetrahydrofolate reductase and in cysthationine beta synthase: is there a link to homocysteine levels in peripheral arterial disease?. Mol Biol Rep 38, 3361–3366 (2011). https://doi.org/10.1007/s11033-010-0443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0443-1

Keywords

Navigation