Skip to main content

Advertisement

Log in

Application of Genotype MTBDRplus in rapid detection of the Mycobacterium tuberculosis complex as well as its resistance to isoniazid and rifampin in a high volum laboratory in Southern China

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The alarmingly worsening epidemics of drug-resistant tuberculosis (TB) call urgent need for a simple method for the rapid detection of drug-resistant TB in clinical settings. In an attempt to establish a rapid procedure for laboratory diagnosis of TB and investigate the local TB epidemiology, molecular line probe assay of the Genotype MTBDRplus was used to identify Mycobacterium tuberculosis complex (MTBC) and detect mutations conferring resistance to two most active first-line drugs against TB: Rifampin and Isoniazid. 96 acid-fast bacillus (AFB) smear- positive sputums and 18 PCR-positive non-sputum specimens have been determined for the MTBC and resistance to Rifampin and Isoniazid. The MTBC detection rates in two sources of specimens were 93.8% (90/96) and 77.8% (14/18) respectively. The overall drug resistance (Rifampin or Isoniazid) occurred in 34.6% (36/104). Resistance to rifampin (RMP) was 28.8% (30/104) and 25% (26/104) was to Isoniazid (INH), in which high level drug resistance accounted for 88.5% (23/26) and low level drug resistance accounted for 7.7% (2/26). Multidrug resistance (MDR), defined as resistant to both RMP and INH, was found in 19.2% (20/104) of clinical samples, which was double that of official statistics. In addition, 63.3% (19/30) RMP-resistant mutations were identified in the region of RopB 530–533 and 57.9% (11/19) were the S531L mutation. 84.6% (22/26) of resistance to INH was mediated by Kat S315T1 mutations which conferred the high-level resistance to INH. The Genotype MTBDRplus line probe assay is a suitable and applicable method for establishing the rapidness in detection of drug-resistant TB in clinical laboratory. It will be a valuable addition to the conventional TB diagnostic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO (2009) Global tuberculosis control: epidemiology, strategy, financing: WHO report 2009: World Health Organization

  2. WHO (2009) Global tuberculosis control: a short update to the 2009 report: World Health Organization

  3. Glaziou P, Floyd K, Raviglione M (2009) Global burden and epidemiology of tuberculosis. Clin Chest Med 30(4):621–636 vii

    Article  PubMed  Google Scholar 

  4. Chapman AL (2008) Antituberculosis drug resistance: new global data on an emerging global emergency. Clin Med 8(5):478–479

    PubMed  Google Scholar 

  5. Lonnroth K, Raviglione M (2008) Global epidemiology of tuberculosis: prospects for control. Semin Respir Crit Care Med 29(5):481–491

    Article  PubMed  Google Scholar 

  6. Riccardi G, Pasca MR, Buroni S (2009) Mycobacterium tuberculosis: drug resistance and future perspectives. Future Microbiol 4:597–614

    Article  CAS  PubMed  Google Scholar 

  7. Wright A, Zignol M, Van Deun A, Falzon D, Gerdes SR, Feldman K et al (2009) Epidemiology of antituberculosis drug resistance 2002–07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet 373(9678):1861–1873

    Article  PubMed  Google Scholar 

  8. Aziz MA, Wright A, Laszlo A, De Muynck A, Portaels F, Van Deun A et al (2006) Epidemiology of antituberculosis drug resistance (the Global Project on Anti-tuberculosis Drug Resistance Surveillance): an updated analysis. Lancet 368(9553):2142–2154

    Article  PubMed  Google Scholar 

  9. Cole ST (1996) Rifamycin resistance in mycobacteria. Res Microbiol 147(1–2):48–52

    Article  CAS  PubMed  Google Scholar 

  10. Vilcheze C, Jacobs WR Jr (2007) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61:35–50

    Article  CAS  PubMed  Google Scholar 

  11. Ahmad S, Mokaddas E (2009) Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Respir Med 103(12):1777–1790

    Article  PubMed  Google Scholar 

  12. Ani AE (2008) Advances in the laboratory diagnosis of Mycobacterium tuberculosis. Ann Afr Med 7(2):57–61

    Article  CAS  PubMed  Google Scholar 

  13. Grandjean L, Moore DA (2008) Tuberculosis in the developing world: recent advances in diagnosis with special consideration of extensively drug-resistant tuberculosis. Curr Opin Infect Dis 21(5):454–461

    Article  PubMed  Google Scholar 

  14. Charles M, Pape JW (2006) Tuberculosis and HIV: implications in the developing world. Curr HIV/AIDS Rep 3(3):139–144

    Article  PubMed  Google Scholar 

  15. Zar HJ (2004) Tuberculosis in the developing world. Pediatr Pulmonol Suppl 26:53–54

    Article  PubMed  Google Scholar 

  16. Neonakis IK, Gitti Z, Baritaki S, Petinaki E, Baritaki M, Spandidos DA (2009) Evaluation of GenoType mycobacteria direct assay in comparison with Gen-Probe Mycobacterium tuberculosis amplified direct test and GenoType MTBDRplus for direct detection of Mycobacterium tuberculosis complex in clinical samples. J Clin Microbiol 47(8):2601–2603

    Article  PubMed  Google Scholar 

  17. Causse M, Ruiz P, Gutierrez JB, Zerolo J, Casal M (2008) Evaluation of new GenoType MTBDRplus for detection of resistance in cultures and direct specimens of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 12(12):1456–1460

    CAS  PubMed  Google Scholar 

  18. Hillemann D, Rusch-Gerdes S, Richter E (2007) Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 45(8):2635–2640

    Article  CAS  PubMed  Google Scholar 

  19. Lacoma A, Garcia-Sierra N, Prat C, Ruiz-Manzano J, Haba L, Roses S et al (2008) GenoType MTBDRplus assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical samples. J Clin Microbiol 46(11):3660–3667

    Article  CAS  PubMed  Google Scholar 

  20. Miotto P, Piana F, Cirillo DM, Migliori GB (2008) Genotype MTBDRplus: a further step toward rapid identification of drug-resistant Mycobacterium tuberculosis. J Clin Microbiol 46(1):393–394

    Article  PubMed  Google Scholar 

  21. Nikolayevskyy V, Balabanova Y, Simak T, Malomanova N, Fedorin I, Drobniewski F (2009) Performance of the Genotype MTBDRPlus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation. BMC Clin Pathol 9:2

    Article  PubMed  Google Scholar 

  22. Barnard M, Albert H, Coetzee G, O’Brien R, Bosman ME (2008) Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. Am J Respir Crit Care Med 177(7):787–792

    Article  PubMed  Google Scholar 

  23. Bwanga F, Hoffner S, Haile M, Joloba ML (2009) Direct susceptibility testing for multi drug resistant tuberculosis: a meta-analysis. BMC Infect Dis 9:67

    Article  PubMed  Google Scholar 

  24. Makinen J, Marttila HJ, Marjamaki M, Viljanen MK, Soini H (2006) Comparison of two commercially available DNA line probe assays for detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol 44(2):350–352

    Article  CAS  PubMed  Google Scholar 

  25. Palomino JC (2009) Molecular detection, identification and drug resistance detection in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 56(2):103–111

    Article  CAS  PubMed  Google Scholar 

  26. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ et al (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341(8846):647–650

    Article  CAS  PubMed  Google Scholar 

  27. Hazbon MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M et al (2006) Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 50(8):2640–2649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Willis Ko for thoughtful editing contributions and Clinical Microbiology Laboratory staffs for kind support in specimen collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binwu Ying or Lanlan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Ye, Y., Duo, L. et al. Application of Genotype MTBDRplus in rapid detection of the Mycobacterium tuberculosis complex as well as its resistance to isoniazid and rifampin in a high volum laboratory in Southern China. Mol Biol Rep 38, 2185–2192 (2011). https://doi.org/10.1007/s11033-010-0347-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0347-0

Keywords

Navigation