Skip to main content
Log in

Mutation analysis of GJB2 and GJB6 genes in Southeastern Brazilians with hereditary nonsyndromic deafness

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In developed countries deafness has a genetic cause in over 60% of the cases. Contrastingly, in Brazil, it is estimated that only 16% of all deafnesses are caused by genetic factors. Among hereditary hearing deficiencies, approximately half is caused by mutations in the Gap Junction Protein Beta-2 (GJB2) gene, which encodes the protein Connexin 26 (Cx26). There are four mutations in this gene that present high prevalence in specific ethnical groups, namely, 35delG, 167delT, 235delC, and W24X. The 35delG mutation is the most frequent one, occurring in homozygosity or in compound heterozygosity with mutations in the GJB2 and GJB6 genes. This study aims to determine the prevalence of GJB2-35delG, GJB2-167delT, GJB2-235delC, GJB2-W24X, del (GJB6-D13S1830), and del (GJB6-D13S1854) mutations in patients with nonsyndromic deafness in the Espirito Santo State, Brazil. A total of 77 individuals were evaluated, from which 88.3% presented normal genotypes for all analyzed mutations, 1.3% were compound heterozygotes for 35delG-GJB2/D13S1830-GJB6, 1.3% were compound heterozygotes for 35delG/D13S1854-GJB6, 3.9% were homozygotes for the 35delG mutation and 5.2% were heterozygotes for 35delG/GJB2. The frequency of mutant alleles 35delG/GJB2, del (D13S1830/GJB6), and del (D13S1854/GJB6) was 7.8, 0.65, and 0.65%, respectively. Mutations 167delT, 235delC, and W24X were not detected. Determining the prevalence of specific mutations related to inherited deafness in a population can contribute to the development of more efficient and affordable molecular diagnostic protocols, and help in the genetic counseling of patients and their families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Downs MP (1995) Universal newborn hearing screening—the Colorado story. Int J Pediatr Otorhinolaryngol 32:257–259

    Article  CAS  PubMed  Google Scholar 

  2. Mehl AL, Thomson V (1998) Newborn hearing screening: the great omission. Pediatrics 101:E4.23

    Article  Google Scholar 

  3. Mehl AL, Thomson V (2002) The Colorado newborn hearing screening project, 1992–1999: on the threshold of effective population-based universal newborn hearing screening. Pediatrics 109:E7

    Article  PubMed  Google Scholar 

  4. Piatto VB, Maniglia JV (2001) Importância do Gene Conexina 26 na etiologia da deficiência auditiva sensorioneural não-sindrômica. Acta Awho 20(2):106–112

    Google Scholar 

  5. Bitner-Glindzicz M (2002) Hereditary deafness and phenotyping in humans. Br Med Bull 63:73–94

    Article  CAS  PubMed  Google Scholar 

  6. Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S, D’Agruma L et al (1998) Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 351:394–398

    Article  CAS  PubMed  Google Scholar 

  7. Wilcox SA, Saunders K, Osborn AH, Arnold A, Wunderlich J, Kelly T et al (2000) High frequency hearing loss correlated with mutations in the GJB2 gene. Hum Genet 106:399–405

    Article  CAS  PubMed  Google Scholar 

  8. Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27

    Article  CAS  PubMed  Google Scholar 

  9. Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388

    Article  CAS  PubMed  Google Scholar 

  10. Bors A, Andrikovics H, Kalmár L et al (2004) Frequencies of two common mutations (c.35delG and c.167delT) of the connexin 26 gene in different populations of Hungary. Int J Mol Med 14:1105–1108

    CAS  PubMed  Google Scholar 

  11. Batissoco AC (2006) Mutações no gene GJB2 e GJB6 em indivíduos com deficiência auditiva. Dissertação, Universidade de São Paulo

    Google Scholar 

  12. Morell RJ, Kim HJ, Hood LJ, Goforth L, Friderici K, Fisher R et al (1998) Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 339:1500–1505

    Article  CAS  PubMed  Google Scholar 

  13. Park HJ, Hahn SH, Chun YM, Park K, Kim HN (2000) Connexin26 mutations associated with nonsyndromic hearing loss. Laryngoscope 110:1535–1538

    Article  CAS  PubMed  Google Scholar 

  14. Rabionet R, Zelante L, Lopez-Bigas N, D’Agruma L, Melchionda S, Restagno G et al (2000) Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene. Hum Genet 106:40–44

    Article  CAS  PubMed  Google Scholar 

  15. Gabriel H, Kupsch P, Sudendey J, Winterhager E, Jahnke K, Lautermann J (2001) Mutations in the connexin26/GJB2 gene are the most common event in non-syndromic hearing loss among the German population. Hum Mutat 17:521–522

    Article  CAS  PubMed  Google Scholar 

  16. Ohtsuka A, Yuge I, Kimura S, Namba A, Abe S, Van Laer L et al (2003) GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation. Hum Genet 112:329–333

    CAS  PubMed  Google Scholar 

  17. Ranshankar M, Girirajan S, Dagan O et al (2003) Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in Índia. J Med Genet 40:68

    Article  Google Scholar 

  18. Sobe T, Erlich P, Berry A et al (1999) High frequency of the deafness associated 167delT mutation in the connexin 26 (GJB2) gene in Israeli Ashkenazim. Am J Med Genet 86:499–500

    Article  CAS  PubMed  Google Scholar 

  19. Gasparini P, Rabionet R, Barbujani G, Melchionda S, Petersen M, Brondum-Nielsen K et al (2000) High carrier frequency of the 35delG deafness mutation in European populations. Eur J Hum Genet 8:19–23

    Article  CAS  PubMed  Google Scholar 

  20. Gasparini P, Estivill X, Volpini V, Totaro A, Castellvi-Bel S, Govea N et al (1997) Linkage of DFNB1 to non-syndromic neurosensory autosomal-recessive deafness in Mediterranean families. Eur J Hum Genet 5:83–88

    CAS  PubMed  Google Scholar 

  21. Sartorato EL, Gottardi E, de Oliveira CA, Magna LA, Annichino-Bizzacchi JM, Seixas CA, Maciel-Guerra AT (2000) Determination of the frequency of 35delG allele in Brazilian neonates. Clin Genet 58(1):339–340

    CAS  PubMed  Google Scholar 

  22. Kenneson A, Van Naarden Braun K, Boyle C (2002) GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet Med 4:258–274

    Article  CAS  PubMed  Google Scholar 

  23. Del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Tellería D et al (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346(4):243–249

    Article  CAS  PubMed  Google Scholar 

  24. Del Castillo I, Moreno-Pelayo MA, Del Castillo FJ, Brownstein Z, Marlin S, Adina Q et al (2003) Prevalence and evolutionary origins of the del(GJB6–D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am J Hum Genet 73(6):1452–1458 Epub 2003 Oct 21

    Article  CAS  PubMed  Google Scholar 

  25. Piatto VB, Bertollo EM, Sartorato EL, Maniglia JV (2004) Prevalence of the GJB2 mutations and the del(GJB6–D13S1830) mutation in Brazilian patients with deafness. Hear Res 196:87–93

    Article  CAS  Google Scholar 

  26. Del Castillo FJ, Rodríguez-Ballesteros M, Alvarez A et al (2005) A novel deletion involving the connexin-30 gene, del(GJB6–D13S1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet 42:588–594

    Article  CAS  PubMed  Google Scholar 

  27. Álvarez A, Castilho ID, Villamar M et al (2005) High prevalence of the W24X mutation in the gene encoding Connexin-26 (GJB2) in Spanish Romani (Gypsies) with autosomal recessive non-syndromic hearing loss. Am J Med Genet 137A:255–258

    Article  PubMed  Google Scholar 

  28. Ramchander PV, Nandur VU, Dwarakanath K et al (2005) Prevalence of Cx26 (GJB2) gene mutations causing recessive nonsyndromic hearing impairment in India. Int J Hum Genet 5:241–246

    CAS  Google Scholar 

  29. Smith RJ, Hone S (2003) Genetic screening for deafness. Pediatr Clin North Am 50:315–329

    Article  PubMed  Google Scholar 

  30. Kudo T, Ikeda K, Kure S et al (2000) Novel mutations in the Connexin 26 Gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 90:141–145

    Article  CAS  PubMed  Google Scholar 

  31. Batissoco AC, Abreu-Silva RS, Braga MC, Lezirovitz K, Della-Rosa V, Alfredo T Jr et al (2009) Prevalence of GJB2 (connexin-26) and GJB6 (connexin-30) mutations in a cohort of 300 Brazilian hearing-impaired individuals: implications for diagnosis and genetic counseling. Ear Hear 30(1):1–7

    Article  PubMed  Google Scholar 

  32. Oliveira CA, Alexandrino F, Abe-Sandes K, Silva WA Jr, Maciel-Guerra AT, Magna LA et al (2004) Frequency of the 35delG mutation in the GJB2 gene in samples of European, Asian and African Brazilians. Hum Biol 76(2):313–316

    Article  CAS  PubMed  Google Scholar 

  33. Kelley PM, Harris DJ, Comer BC, Askew JW, Fowler T, Smith SD et al (1998) Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 62:792–799

    Article  CAS  PubMed  Google Scholar 

  34. Lucotte G, Bathelier C, Champenois T (2001) PCR test for diagnosis of the common GJB2 (connexin 26) 35delG mutation on dried blood spots and determination of the carrier frequency in France. Mol Cell Probes 15:57–59

    Article  CAS  PubMed  Google Scholar 

  35. Frei K, Szuhai K, Lucas T, Weipoltshammer K et al (2002) Connexin 26 mutations in cases of sensorineural deafness in eastern Austria. Eur J Hum Genet 10:427–432

    Article  CAS  PubMed  Google Scholar 

  36. Tekin M, Akar N, Cin S et al (2001) Connexin 26 (GJB2) mutations in the Turkish population: implications for the origin and high frequency of the 35delG mutation in Caucasians. Hum Genet 108:385–389

    Article  CAS  PubMed  Google Scholar 

  37. Najmabadi H, Cucci RA, Sahebjam S, Kouchakian N, Farhadi M, Kahrizi K et al (2002) GJB2 mutations in Iranians with autosomal recessive nonsyndromic sensorineural hearing loss. Hum Mutat 19:572–577

    Article  PubMed  Google Scholar 

  38. Oliveira P, Castro F, Ribeiro A (2002) Surdez infantil. Rev Bras Otorrinolaringol 68:417–423

    Google Scholar 

  39. Piatto VB, Nascimento ECT, Alexandino F et al (2005) Molecular genetics of non-syndromic deafness. Braz J Otorrinolaryngol 71:216–223

    Google Scholar 

  40. Pfeilsticker LN, Stole G, Sartorato EL, Delfino D, Guerra ATM (2004) A investigação genética na surdez hereditária não-sindrômica. Bras J Otorrinolaringol 70(2):181–186

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Fundação de Apoio à Ciência e Tecnologia do Espírito Santo—FAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iúri Drumond Louro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Freitas Cordeiro-Silva, M., Barbosa, A., Santiago, M. et al. Mutation analysis of GJB2 and GJB6 genes in Southeastern Brazilians with hereditary nonsyndromic deafness. Mol Biol Rep 38, 1309–1313 (2011). https://doi.org/10.1007/s11033-010-0231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0231-y

Keywords

Navigation