Skip to main content

Advertisement

Log in

Targeted killing effects of double CD and TK suicide genes controlled by survivin promoter on gastric cancer cell

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Suicide genes such as cytosine deaminase (CD) and herpes simplex virus thymidine kinase (TK) encode products that convert nontoxic substances (prodrugs) into toxic metabolites. Studies in recent years indicated that survivin(sur) expression was associated with the biological behaviors of gastric carcinoma. In the present study, targeted killing effects of double CD and TK suicide genes controlled by survivin promoter on gastric cancer cell were investigated, the recombinant pSCT vector containing CD and TK genes driven by sur promoter was constructed and transfected into SGC-7901 cells. After adding the CCV and 5-FC, the effects of double suicide genes on cell growth, cell cycle and proliferation were determined by MTT assay and flow cytometry (FCM). The results showed that sur promoter could specifically drive the expression of double CD/TK gene in SGC-7901 cells, whereas not in the normal GES-1 cell. After using CCV and 5-FC, the growth of SGC-7901 cells was inhibited. G1 phase proportion was significantly higher in SGC-7901 cells transfected with double suicide genes than the untransfected cells. These results suggest that CD and TK double suicide genes driven by sur promoter could provide a new approach for enhancing selective suicide gene therapy of CD/5-FC for the treatment of advanced gastric carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

Cytosine deaminase

TK:

Thymidine kinase

FCM:

Flow cytometry

Sur:

Survivin

GCV:

Ganciclovir

5-FC:

5-Fluorocytosine

References

  1. Haglund UH, Wallner B (2004) Current management of gastric cancer. J Gastrointest Surg 8(7):907–914

    Article  PubMed  Google Scholar 

  2. Thompson GB, van Heerden JA, Sarr MG (1993) Adenocarcinoma of the stomach: are we making progress? Lancet 342(8873):713–718

    Article  CAS  PubMed  Google Scholar 

  3. Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, Hamilton SM (2005) Gastric adenocarcinoma: review and considerations for future directions. Ann Surg 241(1):27–39

    PubMed  Google Scholar 

  4. Shang J, Pena AS (2005) Multidisciplinary approach to understand the pathogenesis of gastric cancer. World J Gastroenterol 11(27):4131–4139

    CAS  PubMed  Google Scholar 

  5. Topuz E, Basaran M, Saip P, Aydiner A, Argon A, Sakar B, Tas F, Uygun K, Bugra D, Aykan NF (2002) Adjuvant intraperitoneal chemotherapy with cisplatinum, mitoxantrone, 5-fluorouracil, and calcium folinate in patients with gastric cancer: a phase II study. Am J Clin Oncol 25(6):619–624

    Article  PubMed  Google Scholar 

  6. Yamamoto K, Fujiwara Y, Nishida T, Takiguchi S, Nakajima K, Miyata H, Yamasaki M, Mori M, Doki Y (2009) Induction chemotherapy with docetaxel, 5-FU and CDDP (DFP) for advanced gastric cancer. Anticancer Res 29(10):4211–4215

    CAS  PubMed  Google Scholar 

  7. Kuramoto M, Shimada S, Ikeshima S, Matsuo A, Yagi Y, Matsuda M, Yonemura Y, Baba H (2009) Extensive intraoperative peritoneal lavage as a standard prophylactic strategy for peritoneal recurrence in patients with gastric carcinoma. Ann Surg 250(2):242–246

    Article  PubMed  Google Scholar 

  8. Li Y, Sun DL, Duan YN, Zhang XJ, Wang N, Zhou RM, Chen ZF, Wang SJ (2010) Association of functional polymorphisms in MMPs genes with gastric cardia adenocarcinoma and esophageal squamous cell carcinoma in high incidence region of North China. Mol Biol Rep 37(1):197–205

    Article  CAS  PubMed  Google Scholar 

  9. Yan S, Zhang H, Xie Y, Sheng W, Xiang J, Ye Z, Chen W, Yang J (2010) Recombinant human interleukin-24 suppresses gastric carcinoma cell growth in vitro and in vivo. Cancer Investig 28(1):85–93

    Article  CAS  Google Scholar 

  10. Wang TS, Ding QQ, Guo RH, Shen H, Sun J, Lu KH, You SH, Ge HM, Shu YQ, Liu P (2009) Expression of livin in gastric cancer and induction of apoptosis in SGC-7901 cells by shRNA-mediated silencing of livin gene. Biomed Pharmacother 64(5):333–338

    PubMed  Google Scholar 

  11. Rodriguez SS, Castro MG, Brown OA, Goya RG, Console GM (2009) Gene therapy for the treatment of pituitary tumors. Expert Rev Endocrinol Metab 4(4):359–370

    Article  CAS  PubMed  Google Scholar 

  12. Sharma A, Tandon M, Bangari DS, Mittal SK (2009) Adenoviral vector-based strategies for cancer therapy. Curr Drug Ther 4(2):117–138

    Article  CAS  PubMed  Google Scholar 

  13. Lupo-Stanghellini MT, Provasi E, Bondanza A, Ciceri F, Bordignon C, Bonini C (2010) Clinical impact of suicide gene therapy in allogeneic hematopoietic stem cell transplantation. Hum Gene Ther 21(3):241–250

    Article  CAS  PubMed  Google Scholar 

  14. Oh JY, Park MY, Kim DR, Lee JH, Shim SH, Chung JH, Yoon HI, Lee JH, Sung MW, Kim YS, Lee CT (2010) Combination gene therapy of lung cancer with conditionally replicating adenovirus and adenovirus-herpes simplex virus thymidine kinase. Int J Mol Med 25(3):369–376

    CAS  PubMed  Google Scholar 

  15. Tang W, He Y, Zhou S, Ma Y, Liu G (2009) A novel bifidobacterium infantis-mediated TK/GCV suicide gene therapy system exhibits antitumor activity in a rat model of bladder cancer. J Exp Clin Cancer Res 28:155

    Article  PubMed  Google Scholar 

  16. Lechanteur C, Delvenne P, Princen F, Lopez M, Fillet G, Gielen J, Merville MP, Bours V (2000) Combined suicide and cytokine gene therapy for peritoneal carcinomatosis. Gut 47(3):343–348

    Article  CAS  PubMed  Google Scholar 

  17. Both GW (2009) Recent progress in gene-directed enzyme prodrug therapy: an emerging cancer treatment. Curr Opin Mol Ther 11(4):421–443

    CAS  PubMed  Google Scholar 

  18. Greco O, Rossiter S, Kanthou C, Folkes LK, Wardman P, Tozer GM, Dachs GU (2001) Horseradish peroxidase-mediated gene therapy: choice of prodrugs in oxic and anoxic tumor conditions. Mol Cancer Ther 1(2):151–160

    CAS  PubMed  Google Scholar 

  19. Wang W, Jin B, Li W, Xu CX, Cui FA, Liu B, Yan YF, Liu XX, Wang XL (2009) Targeted antitumor effect induced by hTERT promoter mediated ODC antisense adenovirus. Mol Biol Rep [Epub ahead of print]

  20. Teimoori-Toolabi L, Azadmanesh K, Amanzadeh A, Zeinali S (2010) Selective suicide gene therapy of colon cancer exploiting the urokinase plasminogen activator receptor promoter. BioDrugs 24(2):131–146

    Article  CAS  PubMed  Google Scholar 

  21. Li F, Altieri DC (1999) The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res 59(13):3143–3151

    CAS  PubMed  Google Scholar 

  22. Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3(1):46–54

    Article  CAS  PubMed  Google Scholar 

  23. Altieri DC (2004) Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm. J Cell Biochem 92(4):656–663

    Article  CAS  PubMed  Google Scholar 

  24. Altieri DC (2006) Targeted therapy by disabling crossroad signaling networks: the survivin paradigm. Mol Cancer Ther 5(3):478–482

    Article  CAS  PubMed  Google Scholar 

  25. Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC (2004) Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Investig 114(8):1117–1127

    CAS  PubMed  Google Scholar 

  26. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptotic gene, survivin, expressed in cancer and lymphoma. Nat Med 3(8):917–921

    Article  CAS  PubMed  Google Scholar 

  27. Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J, Altieri DC (1998) Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 152(1):43–49

    CAS  PubMed  Google Scholar 

  28. Ma AN, Huang WL, Wu ZN, Hu JF, Li T, Zhou XJ, Wang YX (2010) Induced epigenetic modifications of the promoter chromatin silence survivin and inhibit tumor growth. Biochem Biophys Res Commun 393(4):592–597

    Article  CAS  PubMed  Google Scholar 

  29. Garg H, Salcedo R, Trinchieri G, Blumenthal R (2010) Improved nonviral cancer suicide gene therapy using survivin promoter-driven mutant Bax. Cancer Gene Ther 17(3):155–163

    Article  CAS  PubMed  Google Scholar 

  30. Konopka K, Spain C, Yen A, Overlid N, Gebremedhin S, Düzgüneş N (2009) Correlation between the levels of survivin and survivin promoter-driven gene expression in cancer and non-cancer cells. Cell Mol Biol Lett 14(1):70–89

    Article  CAS  PubMed  Google Scholar 

  31. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  32. Haack K, Moebius U, Knebel Doeberitz MV, Herfarth C, Schackert HK, Gebert JF (1997) Detection of cytosine deaminase in genetically modified tumor cells by specific antibodies. Hum Gene Ther 8(11):1395–1401

    Article  CAS  PubMed  Google Scholar 

  33. Jiang CG, Liu FR, Yu M, Li JB, Xu HM (2010) Cimetidine induces apoptosis in gastric cancer cells in vitro and inhibits tumor growth in vivo. Oncol Rep 23(3):693–700

    CAS  PubMed  Google Scholar 

  34. Lo HW, Day CP, Hung MC (2005) Cancer-specific gene therapy. Adv Genet 54:235–255

    CAS  PubMed  Google Scholar 

  35. Gu J, Andreeff M, Roth JA, Fang B (2002) hTERT promoter induces tumor-specific Bax gene expression and cell killing in syngenic mouse tumor model and prevents systemic toxicity. Gene Ther 9(1):30–37

    Article  CAS  PubMed  Google Scholar 

  36. Lanteri M, Ollier L, Giordanengo V, Lefebvre JC (2005) Designing a HER2/neu promoter to drive alpha 1,3 galactosyltransferase expression for targeted anti-alpha Gal antibody-mediated tumor cell killing. Breast Cancer Res 7(4):R487–R494

    Article  CAS  PubMed  Google Scholar 

  37. Zhu ZB, Makhija SK, Lu B, Wang M, Kaliberova L, Liu B, Rivera AA, Nettelbeck DM, Mahasreshti PJ, Leath CA, Barker S, Yamaoto M, Li F, Alvarez RD, Curiel DT (2004) Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther 11(4):256–262

    Article  CAS  PubMed  Google Scholar 

  38. Morokoff AP, Novak U (2004) Targeted therapy for malignant gliomas. J Clin Neurosci 11(8):807–818

    Article  PubMed  Google Scholar 

  39. Nakaya H, Ishizu A, Ikeda H, Tahara M, Shindo J, Itoh R, Takahashi T, Asaka M, Ishikura H, Yoshiki T (2003) In vitro model of suicide gene therapy for alpha-fetoprotein-producing gastric cancer. Anticancer Res 23(5A):3795–3800

    CAS  PubMed  Google Scholar 

  40. Shen LZ, Wu WX, Xu DH, Zheng ZC, Liu XY, Ding Q, Hua YB, Yao K (2002) Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene. World J Gastroenterol 8(2):270–275

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Sheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, XR., Li, JS., Niu, Y. et al. Targeted killing effects of double CD and TK suicide genes controlled by survivin promoter on gastric cancer cell. Mol Biol Rep 38, 1201–1207 (2011). https://doi.org/10.1007/s11033-010-0218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0218-8

Keywords

Navigation