Skip to main content
Log in

A polygalacturonase inhibitory protein gene (BcMF19) expressed during pollen development in Chinese cabbage-pak-choi

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The level of polygalacturonase inhibitory protein (PGIP) genes involved in pollen development remains unclear. Characterization of the different PGIP genes that are expressed in pollen is necessary in understanding the similarities and differences of functions between the members of this gene family, as well as the underlying mechanism of pollen development. A gene-encoding putative PGIP, BcMF19 was successfully cloned on a cDNA-amplified fragment length polymorphism fragment after it was found to be up-regulated in the fertile flower buds of Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis Makino) genic male sterile AB line (Bajh97-01A/B). The amino acid sequence of BcMF19 possessed the basic feature of PGIPs, containing an N-terminal signal peptide, several potential N-glycosylation sites, two disulfide bridges flanking both the N- and C-terminal regions, and 10 leucine-rich repeat (LRR) consensus sequences. Real-time RT-PCR verified the higher expression of BcMF19 in the fertile flower buds compared to the sterile flower buds. In situ hybridization showed that BcMF19 was exclusively expressed in the tapetal cells and microspores during anther development. These results indicate that BcMF19 is a novel PGIP gene that might be involved in pollen or tapetum development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

cDNA-AFLP:

cDNA-amplified fragment length polymorphism

LRR:

Leucine-rich repeat

LRR-RLK:

Leucine-rich repeat receptor-like kinases

ORF:

Open reading frame

PG:

Polygalacturonase

PGIP:

Polygalacturonase inhibitory protein

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcriptase polymerase chain reaction

References

  1. Robert LS, Allard S, Gerster JL, Cass L, Simmonds J (1993) Isolation and characterization of a polygalacturonase gene highly expressed in Brassica napus pollen. Plant Mol Biol 23:1273–1278

    Article  CAS  PubMed  Google Scholar 

  2. Hadfield KA, Rose JKC, Yaver DS, Berka RM, Bennett AB (1998) Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly. Plant Physiol 117:363–373

    Article  CAS  PubMed  Google Scholar 

  3. Cervone F, Hahn MG, De Lorenzo G, Darvill A, Albersheim P (1989) Host–pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol 90:542–548

    Article  CAS  PubMed  Google Scholar 

  4. Cervone F, Castoria R, Leckie F, De Lorenzo G (1997) Perception of fungal elicitors and signal transduction. In: Aducci P (ed) Signal transduction in plants. Birkäuser Verlag, Basel, Switzerland, pp 153–177

    Google Scholar 

  5. De Lorenzo G, Cervone F (1997) Polygalacturonase-inhibiting proteins (PGIPs): their role in specificity and defense against pathogenic fungi. In: Stacey G, Keen NT (eds) Plant–microbe interactions. Chapman & Hall, New York, NY, pp 76–93

    Google Scholar 

  6. Albersheim P, Anderson AJ (1971) Protein from plant cell wall inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA 68:1815–1819

    Article  CAS  PubMed  Google Scholar 

  7. Devlin WS (1992) Involvement of the oxidative burst in phytialexin accumulation and the hypersensitive reaction. Plant Physiol 100:1189

    Article  CAS  PubMed  Google Scholar 

  8. Li R, Rimmer R, Yu M, Sharpe AG, Se′guin-Swartz G, Lydiate D, Hegedus DD (2003) Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta 217:299–308

    CAS  PubMed  Google Scholar 

  9. Kars I, Krooshof GH, Wagemakers L (2005) Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43:213–225

    Article  CAS  PubMed  Google Scholar 

  10. Ramanthan V, Simpson CG, Thow G, Iannetta PPM, McNicol RJ, Williamson B (1997) cDNA cloning and expression of polygalacturonase inhibiting protein (PGIP) from raspberry (Rubus ideaus). J Exp Bot 48(311):1185–1193

    Article  Google Scholar 

  11. Wang J, Zhu C, Chen G, Pan D, Pan C, Ye L (2007) Cloning and sequencing of PGIP Gene from Longyanmei, a cultivar of Prunus mume. J Fruit Sci 24(1):55–58 in Chinese

    Google Scholar 

  12. Lalanne E, Honys D, Johnson A, Borner GHH, Lilley KS, Dupree P, Grossniklaus U, Twell D (2004) SETH1 and SETH2, two components of the glycosyphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240

    Article  CAS  PubMed  Google Scholar 

  13. Baumberger N, Ringli C, Keller B (2001) The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes Dev 15:1128–1139

    Article  CAS  PubMed  Google Scholar 

  14. Mu JH, Lee HS, Kao TH (1994) Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell 6:709–721

    Article  CAS  PubMed  Google Scholar 

  15. Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J 50:751–766

    Article  CAS  PubMed  Google Scholar 

  16. Rubinstein AL, Brodwater AH, Lowery KB, Bedinger PA (1995) Pex1, A pollen specific gene with an extensin-like domain. Proc Natl Acad Sci USA 92:3086–3090

    Article  CAS  PubMed  Google Scholar 

  17. Muschietti J, Eyal Y, McCormick S (1998) Pollen tube localization implies a role in pollen-pistil interactions for the tomato receptor-like protein kinases LePRK1 and LePRK2. Plant Cell 10:319–330

    Article  CAS  PubMed  Google Scholar 

  18. Kim H, Cotter R, Johnson S, Senda M, Dodds P, Kulikauskas R, Tang W, Ezcurra I, Herzmark P, McCormick S (2002) New pollen-specific receptor kinases identified in tomato, maize and Arabidopsis: the tomato kinases show overlapping but distinct localization patterns on pollen tubes. Plant Mol Biol 50:1–16

    Article  CAS  PubMed  Google Scholar 

  19. DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45:1–16

    Article  CAS  PubMed  Google Scholar 

  20. Hord CL, Chen C, DeYoung BJ, Clark SE, Ma H (2006) The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell 18:1667–1680

    Article  CAS  PubMed  Google Scholar 

  21. Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    Article  CAS  PubMed  Google Scholar 

  22. Zhao DZ, Wang GF, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16:2021–2031

    Article  CAS  PubMed  Google Scholar 

  23. Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male gametogenesis. Plant Cell 17:3337–3349

    Article  CAS  PubMed  Google Scholar 

  24. Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361

    Article  CAS  PubMed  Google Scholar 

  25. Liu L, Wang Y, Zhang T, Huang L, Xiang X, Cao J (2007) Isolation and characterisation of the microspore-related gene BcMF4 in Chinese cabbage-pak-choi and its functional identification in Arabidopsis. J Hort Sci Biotech 82(1):133–139

    CAS  Google Scholar 

  26. Huang L, Cao J, Ye W, Liu T, Jiang L, Ye Y (2008) Transcriptional differences between the male-sterile mutant bcms and wild-type Brassica campestris ssp. chinensis reveal genes related to pollen development. Plant Biol 10:342–355

    Article  CAS  PubMed  Google Scholar 

  27. Cao J, Cao S, Yi Q (1995) RAPD analysis on genomic DNA of Chines cabbage and the other groups of Brassica. Acta Hort Sinica 22:47–52 in Chinese

    Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  29. de Lorenzo G, Cervone F, Bellincampi D, Caprari C, Clark A, Desiderio A, Devoto A, Forrest R, Lockie F, Nuss L (1994) Polygalacturonase, PGIP and oligogalacturonides in cell communication. Biochem Soc Trans 22:396–399

    Google Scholar 

  30. Mattei B, Bernakia MS, Feserici L, Cervone F, Boffi A (2001) Secondary structure and post-translational modification of the leucine-rich repeat protein PGIP from Phaseolus vulgaris. Biochem 40:569–576

    Article  CAS  Google Scholar 

  31. Zhang Q, Liu H, Cao J (2008) Identification and preliminary analysis of a new PCP promoter from Brassica rapa ssp. chinensis. Mol Biol Rep 35(4):685–691

    Article  PubMed  Google Scholar 

  32. Huang L, Cao J-S, Zhang Y-C, Ye Y-Q (2007) Characterization of a novel gene, BcMF7 that is expressed preferentially in pollen of Brassica campestris L. ssp. chinensis Makino. Sci China Ser C 50(4):497–504

    Article  CAS  Google Scholar 

  33. Huang L, Cao JS, Zhang AH, Ye YQ (2008) Characterization of a putative pollen-specific arabinogalactan protein gene, BcMF8, from Brassica campestris ssp. chinensis. Mol Biol Rep 35(4):631–639

    Article  CAS  PubMed  Google Scholar 

  34. Huang L, Cao J, Zhang A, Zhang Y, Ye Y (2008) Characterisation of BcMF10, a novel gene involved in pollen wall development of Brassica rapa ssp. chinensis. Func Plant Biol 35(12):1194–1204

    Article  CAS  Google Scholar 

  35. Song J, Zhang L, Cao J (2009) Molecular cloning and characterization of a novel pollen predominantly membrane protein gene BcMF12 from Brassica campestris ssp. chinensis. Mol Biol Rep 36(8):2307–2314

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Cao J (2009) Morphological and functional characterization of BcMF13 in the antisense-silenced plants of Brassica campestris ssp. chinensis var. parachinensis. Mol Biol Rep 36(5):929–937

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Cao J, Huang L, Yu X, Xiang X (2008) BcMF13, a new reproductive organ-specific gene from Brassica rapa. ssp. chinensis, affects pollen development. Mol Biol Rep 35(2):207–214

    Article  CAS  PubMed  Google Scholar 

  38. Tian A, Cao J, Huang L, Yu X, Ye W (2009) Characterization of a male sterile related gene BcMF15 from Brassica campestris ssp. chinensis. Mol Biol Rep 36(2):307–314

    Article  CAS  PubMed  Google Scholar 

  39. Huang L, Zhang A, Ye Y, Zhang Y, Liu T, Cao J (2009) The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. J Exp Bot 60(1):301–313

    Article  CAS  PubMed  Google Scholar 

  40. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  41. Davis EJ, Chen D, DeWald DB, Shope J, MacAdam J, Wu YJ (2009) Searching for new cell wall protein genes in Arabidopsis. Plant Physiol Biochem 47(2):81–85

    Article  CAS  PubMed  Google Scholar 

  42. Huang L, Ye Y, Zhang Y, Zhang A, Liu T, Cao J (2009) BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation. Ann Bot 104(7):1339–1351

    Article  CAS  PubMed  Google Scholar 

  43. De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 5:295–299

    Article  PubMed  Google Scholar 

  44. Sicilia F, Fernandez RJ, Caprari C, De Lorenzo G, Tsernoglou D, Cervone F, Federici L (2005) The polygalacturonase-inhibiting protein PGIP2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endopolygalacturonase PG1 of Botrytis cinerea. Plant Physiol 139:1380–1388

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of China (No. 30871715) and the Natural Science Foundation of Zhejiang province (Y3090294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashu Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Liu, Y., Yu, X. et al. A polygalacturonase inhibitory protein gene (BcMF19) expressed during pollen development in Chinese cabbage-pak-choi. Mol Biol Rep 38, 545–552 (2011). https://doi.org/10.1007/s11033-010-0139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0139-6

Keywords

Navigation