Skip to main content
Log in

Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study was to describe the microbial communities in the distal gut of wild wolves (Canis lupus). Fecal samples were collected from three healthy unrelated adult wolves captured at the nearby of Dalai Lake Nature Reserve in Inner Mongolia of China. The diversity of fecal bacteria was investigated by constructing PCR-amplified 16S rRNA gene clone libraries using the universal bacterial primers 27 F and 1493 R. A total of 307 non-chimeric near-full-length 16S rRNA gene sequences were analyzed and 65 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified. Seventeen OTUs (26%) showed less than 98% sequence similarity to 16S rRNA gene sequences were reported previously. Five different bacterial phyla were identified, with the majority of OTUs being classified within the phylum Firmicutes (60%), followed by Bacteroidetes (16.9%), Proteobacteria (9.2%), Fusobacteria (9.2%) and Actinobacteria (4.6%). The majority of clones fell within the order Clostridiales (53.8% of OTUs). It was predominantly affiliated with five families: Lachnospiraceae was the most diverse bacterial family in this order, followed by Ruminococcaceae, Clostridiaceae, Peptococcaceae and Peptostreptococcaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  CAS  PubMed  Google Scholar 

  2. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host–bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  Google Scholar 

  3. Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62:1157–1170

    CAS  PubMed  Google Scholar 

  4. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host–microbial relationships in the intestine. Science 291:881–884

    Article  CAS  PubMed  Google Scholar 

  5. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota–introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  6. Macfarlane S, Macfarlane GT (2003) Regulation of short–chain fatty acid production. P Nutr Soc 62:67–72

    CAS  Google Scholar 

  7. Fredrik B, Hao D, Ting W, Lora VH, Gou YK, Andras N, Clay FS, Jeffrey IG (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  Google Scholar 

  8. Thaddeus SS, Lora VH, Jeffrey IG (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Natl Acad Sci USA 99:15451–15455

    Article  Google Scholar 

  9. Sartor RB (1997) Review article: role of the enteric microflora in the pathogenesis of intestinal inflammation and arthritis. Aliment Pharmacol Ther 11(Suppl. 3):17–23

    PubMed  Google Scholar 

  10. Guarner F, Casellas F, Borruel N, Antolin M, Videla S, Vilaseca J, Malagelada JR (2002) Role of microecology in chronic inflammatory bowel diseases. Eur J Clin Nutr 56:34–38

    Article  Google Scholar 

  11. Moore WEC, Moore LH (1995) Intestinal floras of population that have a high risk of colon cancer. Appl Environ Microbiol 61:3202–3207

    CAS  PubMed  Google Scholar 

  12. Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J, Lochs H (1998) Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 115:281–286

    Article  CAS  PubMed  Google Scholar 

  13. Lemaire LC, van Lanschot JJ, Stoutenbeek CP, van Deventer SJ, Wells CL, Gouma DJ (1997) Bacterial translocation in multiple organ failure: cause or epiphenomenon still unproven. Br J Surg 84:1340–1350

    Article  CAS  PubMed  Google Scholar 

  14. Davis CP, Cleven D, Balish E, Yale CE (1977) Bacterial association in the gastrointestinal tract of Beagle dogs. Appl Environ Microbiol 34:194–206

    CAS  PubMed  Google Scholar 

  15. Benno Y, Nakao H, Uchida K, Mitsuoka T (1992) Impact of the advances in age on the gastrointestinal microflora of beagle dogs. J Vet Med Sci 54:703–706

    CAS  PubMed  Google Scholar 

  16. Buddington RK (2003) Postnatal changes in bacterial populations in the gastrointestinal tract of dogs. Am J Vet Res 64:646–651

    Article  PubMed  Google Scholar 

  17. Greetham HL, Giffard C, Hutson RA, Collins MD, Gibson GR (2002) Bacteriology of the Labrador dog gut: a cultural and genotypic approach. J Appl Microbiol 93:640–646

    Article  CAS  PubMed  Google Scholar 

  18. O’Sullivan DJ (2000) Methods for analysis of the intestinal microflora. Curr Issues Intest Microbiol 1:39–50

    PubMed  Google Scholar 

  19. Wang RF, Cao WW, Cerniglia CE (1996) PCR detection and quantification of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol 62:1242–1247

    CAS  PubMed  Google Scholar 

  20. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K (2002) Culture–independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690

    Article  CAS  PubMed  Google Scholar 

  21. Brooks SP, McAllister M, Sandoz M, Kalmokoff ML (2003) Culture-independent phylogenetic analysis of the fecal flora of the rat. Can J Microbiol 49:589–601

    Article  CAS  PubMed  Google Scholar 

  22. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    CAS  PubMed  Google Scholar 

  23. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture–based methods. Microbiol Immunol 46:535–548

    CAS  PubMed  Google Scholar 

  24. Suchodolski JS, Ruaux CG, Steiner JM, Fetz K, Williams DA (2004) Application of molecular fingerprinting for qualitative assessment of small–intestinal bacterial diversity in dogs. J Clin Microbiol 42:4702–4708

    Article  CAS  PubMed  Google Scholar 

  25. Suchodolski JS, Ruaux CG, Steiner JM, Fetz K, Williams DA (2005) Assessment of the qualitative variation in bacterial microflora among compartments of the intestinal tract of dogs by use of a molecular fingerprinting technique. Am J Vet Res 66:1556–1562

    Article  CAS  PubMed  Google Scholar 

  26. Suchodolski JS, Camacho J, Steiner JM (2008) Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative16S rRNA gene analysis. FEMS Microbiol Ecol 66:567–578

    Article  CAS  PubMed  Google Scholar 

  27. Wilson KH, Blitchington RB (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbio 62:2273–2278

    CAS  Google Scholar 

  28. Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ (2002) Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39:33–39

    Article  CAS  PubMed  Google Scholar 

  29. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser–Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  Google Scholar 

  30. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  31. Frey JC, Rothman JM, Pell AN, Nizeyi JB, Cranfield MR, Angert ER (2006) Fecal bacterial diversity in a wild gorilla. Appl Environ Microbiol 72:3788–3792

    Article  CAS  PubMed  Google Scholar 

  32. Yang LY, Chen J, Cheng XL, Xi DM, Yang SL, Deng WD, Mao HM (2010) Phylogenetic analysis of 16S rRNA gene sequences reveals rumen bacterial diversity in Yaks (Bos grunniens). Mol Biol Rep 37:553–562

    Article  CAS  PubMed  Google Scholar 

  33. Yang S, Ma S, Chen J, Mao H, He Y, Xi D, Yang L, He T, Deng W (2009) Bacterial diversity in the rumen of Gayals (Bos frontalis), Swamp buffaloes (Bubalus bubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences. Mol Biol Rep. doi:10.1007/s11033-009-9664-6

  34. Deng W, Xi D, Mao H, Wanapat M (2008) The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep 35:265–274

    Article  CAS  PubMed  Google Scholar 

  35. Wang M, Ahrne S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231

    Article  CAS  PubMed  Google Scholar 

  36. Ritchie LE, Steiner JM, Suchodolski JS (2008) Assessment of microbial diversity along the feline intestinal tract using16S rRNA gene analysis. FEMS Microbiol Ecol 66:590–598

    Article  CAS  PubMed  Google Scholar 

  37. Robert KW (1993) Molecular evolution of the dog family. Trends Genet 9:218–224

    Article  Google Scholar 

  38. Clutton BJ (1995) Origins of the dog: domestication and early history. In: Serpell J (ed) The domestic dog – its evolution, behaviour and interactions with people. Cambridge University Press, Cambridge, UK, pp 7–20

    Google Scholar 

  39. Carles V, Peter S, Jesus EM, Isabel RA, John ER, Rodney LH, Keith AC, Joakim L, Robert KW (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689

    Article  Google Scholar 

  40. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  41. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam S, Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145

    Article  Google Scholar 

  42. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucl Acids Res 2:4673–4680

    Article  Google Scholar 

  43. Kumar S, Tamura K, Nei M (2004) MEGA: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  44. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  Google Scholar 

  45. Van de Peer Y, Chapelle S, De Wachter R (1996) A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 24:3381–3391

    Article  PubMed  Google Scholar 

  46. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264

    Google Scholar 

  47. Atlas R, Bartha R (1998) Microbial ecology: fundamentals and applications. Addison–Wesley Publishing Company, Reading PA

    Google Scholar 

  48. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  49. Daly K, Stewart CSFHJ, Shirazi–Beechey SP (2001) Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Microbiol Ecol 38:141–151

    Article  CAS  Google Scholar 

  50. Mentula S, Harmoinen J, Heikkila M, Westermarck E, Rautio M, Huovinen P, Kononen E (2005) Comparison between cultured small–intestinal and fecal microbiotas in Beagle dogs. Appl Environ Microbiol 71:4169–4175

    Article  CAS  PubMed  Google Scholar 

  51. Marteau P, Rochart P, Dore J, Bera-Maillet C, Bernalier A, Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939–4942

    Article  CAS  PubMed  Google Scholar 

  52. Mangin I, Bonnet R, Seksik P, Sutren M, Rigottier-Gois L, Bouhnik Y, Neut C, Colombel JF, Marteau P, Dore J (2004) Molecular inventory of faecal microbiota in patients with Crohn’s disease. FEMS Microbiol Ecol 50:25–36

    Article  CAS  PubMed  Google Scholar 

  53. Osbaldiston GW, Stowe EC (1971) Microflora of alimentary tract of cats. Am J Vet Res 32:1399–1405

    CAS  PubMed  Google Scholar 

  54. Itoh K, Mitsuoka T, Maejima K, Hiraga C, Nakano K (1984) Comparison of fecal flora of cats based on different housing conditions with special reference to Bifidobacterium. Lab Animal 18:280–284

    Article  Google Scholar 

  55. Lu JR, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD (2003) Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69:6816–6824

    Article  CAS  PubMed  Google Scholar 

  56. Farrelly V, Rainey FA, Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801

    CAS  PubMed  Google Scholar 

  57. Wintzingerod FV, Hoebel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  58. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    CAS  PubMed  Google Scholar 

  59. Wagner A, Blackstone N, Cartwright P, Dick M, Misof B, Snow P, Wagner GP, Bartels J, Murtha M, Pendleton J (1994) Surveys of gene families using polymerase chain reaction: PCR selection and PCR drift. Syst Biol 43:250–261

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in China (NCET-07-0507), the Natural Science Foundation in Shandong Province of China (Z2008D01) and the Project of Science and Technology Development Plan in Shandong Province of China (2007GG2009011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghai Zhang.

Additional information

Honghai Zhang, Lei Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Chen, L. Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol Biol Rep 37, 4013–4022 (2010). https://doi.org/10.1007/s11033-010-0060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0060-z

Keywords

Navigation