Skip to main content

Advertisement

Log in

Computational identification and microarray-based validation of microRNAs in Oryctolagus cuniculus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) belong to a class of small non-coding RNAs that play important roles in complex biological processes through degradation of target mRNAs or repression of their translation. We exploited cross-species comparison to predict miRNAs and identified 266 genes encoding 274 mature miRNAs in Oryctolagus cuniculus. Comparative analyses among mammalian genomes demonstrated that most of the identified miRNAs and their clusters are ancient in origin and conserved among mammals but a few clades as well as some species-specific miRNAs exhibit an ongoing evolutionary process where gain and loss of individual miRNAs have occurred through tandem duplications and random mutations. Our microarray- and RT–PCR-based analyses and target prediction reveal specific expression patterns in brain, spleen, muscle, heart, and ovary, and significant over-representations in certain GO categories as regarded to their mRNA targets include genes that play key roles in signal transduction and transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RISC:

RNA-induced silencing complex

TE:

Transposable elements

References

  1. Thomson JM et al (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20(16):2202–2207

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  3. Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23(5):243–249

    Article  CAS  PubMed  Google Scholar 

  4. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  5. Ambros V, Lee RC (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol 265:131–158

    CAS  PubMed  Google Scholar 

  6. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101

    Article  CAS  PubMed  Google Scholar 

  7. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  8. Brennecke J et al (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85

    Article  PubMed  Google Scholar 

  9. Grimson A et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    Article  CAS  PubMed  Google Scholar 

  10. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  11. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  12. Reinhart BJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  13. Griffiths-Jones S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158

    CAS  PubMed  Google Scholar 

  14. Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15(5):563–568

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan CS et al (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435(7042):682–686

    Article  CAS  PubMed  Google Scholar 

  16. Lagos-Quintana M et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  CAS  PubMed  Google Scholar 

  17. Sempere LF et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13

    Article  PubMed  Google Scholar 

  18. Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18(12):3355–3369

    Article  CAS  PubMed  Google Scholar 

  19. Allen E et al (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36(12):1282–1290

    Article  CAS  PubMed  Google Scholar 

  20. Smalheiser NR, Torvik VI (2005) Mammalian microRNAs derived from genomic repeats. Trends Genet 21(6):322–326

    Article  CAS  PubMed  Google Scholar 

  21. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3):241–247

    Article  CAS  PubMed  Google Scholar 

  22. Yang Z et al (2006) HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34(2):667–675

    Article  CAS  PubMed  Google Scholar 

  23. Yang W et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13(1):13–21

    Article  CAS  PubMed  Google Scholar 

  24. Lai EC et al (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4(7):R42

    Article  PubMed  Google Scholar 

  25. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  CAS  PubMed  Google Scholar 

  26. Lim LP et al (2003) Vertebrate microRNA genes. Science 299(5612):1540

    Article  CAS  PubMed  Google Scholar 

  27. Weaver DB et al (2007) Computational and transcriptional evidence for microRNAs in the honey bee genome. Genome Biol 8(6):R97

    Article  PubMed  Google Scholar 

  28. Flicek P et al (2008) Ensembl 2008. Nucleic Acids Res 36(Database issue):D707–D714

    CAS  PubMed  Google Scholar 

  29. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31

    Article  CAS  PubMed  Google Scholar 

  30. Saeed AI et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374–378

    CAS  PubMed  Google Scholar 

  31. Chen C et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  33. John B et al (2004) Human microRNA targets. PLoS Biol 2(11):e363

    Article  PubMed  Google Scholar 

  34. Castillo-Davis CI, Hartl DL (2003) GeneMerge—post-genomic analysis data mining, and hypothesis testing. Bioinformatics 19(7):891–892

    Article  CAS  PubMed  Google Scholar 

  35. Xue LJ, Zhang JJ, Xue HW (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res 37(3):916–930

    Article  CAS  PubMed  Google Scholar 

  36. Ro S et al (2007) Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35(17):5944–5953

    Article  CAS  PubMed  Google Scholar 

  37. Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176(2):1323–1337

    Article  CAS  PubMed  Google Scholar 

  38. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14(5):814–821

    Article  CAS  PubMed  Google Scholar 

  39. Piriyapongsa J, Jordan IK (2007) A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS ONE 2(2):e203

    Article  PubMed  Google Scholar 

  40. Bussing I, Slack FJ, Grosshans H (2008) let-7 MicroRNAs in development, stem cells and cancer. Trends Mol Med 14(9):400–409

    Article  PubMed  Google Scholar 

  41. Chen JF et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220

    Article  CAS  PubMed  Google Scholar 

  43. Shibata M et al (2008) MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28(41):10415–10421

    Article  CAS  PubMed  Google Scholar 

  44. Tzur G et al (2008) MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells. PLoS ONE 3(11):e3726

    Article  PubMed  Google Scholar 

  45. Altuvia Y et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706

    Article  CAS  PubMed  Google Scholar 

  46. Felicetti F et al (2008) The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68(8):2745–2754

    Article  CAS  PubMed  Google Scholar 

  47. Braun CJ et al (2008) p53-Responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68(24):10094–10104

    Article  CAS  PubMed  Google Scholar 

  48. Laurent LC et al (2008) Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells 26(6):1506–1516

    Article  CAS  PubMed  Google Scholar 

  49. Abbott AL et al (2005) The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9(3):403–414

    Article  CAS  PubMed  Google Scholar 

  50. Boulet AM, Capecchi MR (2004) Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 131(2):299–309

    Article  CAS  PubMed  Google Scholar 

  51. Shalgi R et al (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3(7):e131

    Article  PubMed  Google Scholar 

  52. Grosshans H et al (2005) The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell 8(3):321–330

    Article  CAS  PubMed  Google Scholar 

  53. Wang G et al (2008) Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells. BMC Genomics 9(Suppl 2):S22

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 0606035). We thank Baohong Zhang of East Carolina University for critical evaluation of the manuscrip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xumin Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Fang, Y., Zhang, H. et al. Computational identification and microarray-based validation of microRNAs in Oryctolagus cuniculus . Mol Biol Rep 37, 3575–3581 (2010). https://doi.org/10.1007/s11033-010-0006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0006-5

Keywords

Navigation