Skip to main content
Log in

Acid-sensing ion channels 3: a potential therapeutic target for pain treatment in arthritis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Acid-sensing ion channels 3 (ASIC3) is the most sensitive to such a pH change, predominantly distributed in the sensory peripheral nervous system, and strongly correlated with pain. Recently, there is increasing evidence that ASIC3 may contribute to the pathogenesis of chronic inflammatory pain diseases due to it is predominantly expressed in dorsal root ganglia (DRG) neurons making it a good candidate for a pain sensor. Elevated expression of ASIC3 was found in DRG of rodents with inflamed hind paws. In addition, it has been shown that ASIC3 gene knock-out mice (ASIC3−/−) exhibited no enhanced hyperalgesia in inflamed joint. All theses findings suggest that ASIC3 have important biological effects in inflammation that might be a promising therapeutic target for arthritis pain. In this review, we will briefly discuss the biological features of ASIC3 and summarize recent advances on the role of ASIC3 in the pathogenesis and treatment of arthritis pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yoon E, Doherty JB (2008) Arthritis pain. J Gerontol Soc Work 50(Suppl 1):79–103

    Article  PubMed  Google Scholar 

  2. Shutty MS Jr, Cundiff G, De Good DE (1992) Pain complaint and the weather: weather sensitivity and symptom complaints in chronic pain patients. Pain 49:199–204

    Article  PubMed  Google Scholar 

  3. Saggini R, Zoppi M, Vecchiet F et al (1996) Comparison of electromotive drug administration with ketorolac or with placebo in patients with pain from rheumatic disease: a double-masked study. Clin Ther 18:1169–1174

    Article  CAS  PubMed  Google Scholar 

  4. Mackey S (2004) Mechanisms of inflammatory pain: therapeutic implications. J Clin Rheumatol 10(3 Suppl):S5–S11

    Article  PubMed  Google Scholar 

  5. Ugawa S, Ueda T, Ishida Y et al (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 110:1185–1190

    CAS  PubMed  Google Scholar 

  6. Oliveira MC, Parada CA, Veiga MC et al (2005) Evidence for the involvement of endogenous ATP and P2X receptors in TMJ pain. Eur J Pain 9:87–93

    Article  CAS  PubMed  Google Scholar 

  7. Waldmann R, Champigny G, Bassilana F et al (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  CAS  PubMed  Google Scholar 

  8. Alvarez de la Rosa D, Canessa CM, Fyfe GK et al (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62:573–594

    Article  CAS  PubMed  Google Scholar 

  9. Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282:17325–17329

    Article  CAS  PubMed  Google Scholar 

  10. Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29:578–586

    Article  CAS  PubMed  Google Scholar 

  11. Wang WZ, Chu XP, Li MH et al (2006) Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH. J Biol Chem 281:29369–29378

    Article  CAS  PubMed  Google Scholar 

  12. Xiong ZG, Pignataro G, Li M et al (2008) Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol 8:25–32

    Article  CAS  PubMed  Google Scholar 

  13. Sutherland SP, Benson CJ, Adelman JP et al (2001) Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 98:711–716

    Article  CAS  PubMed  Google Scholar 

  14. Hattori T, Chen J, Harding AM et al (2009) Acid-sensing ion channels 2a and 3 heteromultimerize to form pH-sensitive channels in mouse cardiac dorsal root ganglia neurons. Circ Res 105:279–286

    Article  CAS  PubMed  Google Scholar 

  15. Yiangou Y, Facer P, Smith JA et al (2001) Increased acid-sensing ion channel ASIC-3 in inflamed human intestine. Eur J Gastroenterol Hepatol 13:891–896

    Article  CAS  PubMed  Google Scholar 

  16. Hermanstyne TO, Markowitz K, Fan L et al (2008) Mechanotransducers in rat pulpal afferents. J Dent Res 87:834–838

    Article  CAS  PubMed  Google Scholar 

  17. Voilley N, de Weille J, Mamet J et al (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026–8033

    CAS  PubMed  Google Scholar 

  18. Nagae M, Hiraga T, Wakabayashi H et al (2006) Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone 39:1107–1115

    Article  CAS  PubMed  Google Scholar 

  19. Ikeuchi M, Kolker SJ, Burnes LA et al (2008) Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain 137:662–669

    Article  CAS  PubMed  Google Scholar 

  20. Waldmann R, Bassilana F, de Weille J et al (1997) Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272:20975–20978

    Article  CAS  PubMed  Google Scholar 

  21. Waldmann R, Lazdunski M (1998) H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418–424

    Article  CAS  PubMed  Google Scholar 

  22. Baron A, Waldmann R, Lazdunski M (2002) ASIC-like, proton-activated currents in rat hippocampal neurons. J Physiol 539:485–494

    Article  CAS  PubMed  Google Scholar 

  23. Benos DJ, Stanton BA (1999) Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J Physiol 520(Pt 3):631–644

    Article  CAS  PubMed  Google Scholar 

  24. Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483

    Article  CAS  PubMed  Google Scholar 

  25. Kuduk SD, Di Marco CN, Chang RK et al (2009) Amiloride derived inhibitors of acid-sensing ion channel-3 (ASIC3). Bioorg Med Chem Lett 19:2514–2518

    Article  CAS  PubMed  Google Scholar 

  26. Chagot B, Escoubas P, Diochot S et al (2005) Solution structure of APETx2, a specific peptide inhibitor of ASIC3 proton-gated channels. Protein Sci 14:2003–2010

    Article  CAS  PubMed  Google Scholar 

  27. Jensen JE, Durek T, Alewood PF et al (2009) Chemical synthesis and folding of APETx2, a potent and selective inhibitor of acid sensing ion channel 3. Toxicon 54:56–61

    Article  CAS  PubMed  Google Scholar 

  28. Molliver DC, Immke DC, Fierro L et al (2005) ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain 1:35

    Article  PubMed  Google Scholar 

  29. Immke DC, McCleskey EW (2001) ASIC3: a lactic acid sensor for cardiac pain. ScientificWorldJournal 1:510–512

    CAS  PubMed  Google Scholar 

  30. Mercado F, Lopez IA, Acuna D et al (2006) Acid-sensing ionic channels in the rat vestibular endorgans and ganglia. J Neurophysiol 96:1615–1624

    Article  CAS  PubMed  Google Scholar 

  31. Page AJ, Brierley SM, Martin CM et al (2005) Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54:1408–1415

    Article  CAS  PubMed  Google Scholar 

  32. Jahr H, van Driel M, van Osch GJ et al (2005) Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun 337:349–354

    Article  CAS  PubMed  Google Scholar 

  33. Su X, Li Q, Shrestha K et al (2006) Interregulation of proton-gated Na(+) channel 3 and cystic fibrosis transmembrane conductance regulator. J Biol Chem 281:36960–36968

    Article  CAS  PubMed  Google Scholar 

  34. Babinski K, Catarsi S, Biagini G et al (2000) Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+. J Biol Chem 275:28519–28525

    Article  CAS  PubMed  Google Scholar 

  35. Meng QY, Wang W, Chen XN et al (2009) Distribution of acid-sensing ion channel 3 in the rat hypothalamus. Neuroscience 159:1126–1134

    Article  CAS  PubMed  Google Scholar 

  36. Lin YW, Min MY, Lin CC et al (2008) Identification and characterization of a subset of mouse sensory neurons that express acid-sensing ion channel 3. Neuroscience 151:544–557

    Article  CAS  PubMed  Google Scholar 

  37. Ambalavanar R, Dessem D (2009) Emerging peripheral receptor targets for deep-tissue craniofacial pain therapies. J Dent Res 88:201–211

    Article  CAS  PubMed  Google Scholar 

  38. Diochot S, Baron A, Rash LD et al (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J 23:1516–1525

    Article  CAS  PubMed  Google Scholar 

  39. Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 37:3483–3493

    Article  CAS  PubMed  Google Scholar 

  40. Sugiura T, Kasai M, Katsuya H et al (2003) Thermal properties of acid-induced depolarization in cultured rat small primary afferent neurons. Neurosci Lett 350:109–112

    Article  CAS  PubMed  Google Scholar 

  41. Dube GR, Lehto SG, Breese NM et al (2005) Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels. Pain 117:88–96

    Article  CAS  PubMed  Google Scholar 

  42. Chen CC, Zimmer A, Sun WH et al (2007) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci USA 99:8992-8997

    Google Scholar 

  43. Saugstad LF (1991) Persistent pelvic pain and pelvic joint instability. Eur J Obstet Gynecol Reprod Biol 41:197–201

    Article  CAS  PubMed  Google Scholar 

  44. Dube GR, Elagoz A, Mangat H (2009) Acid sensing ion channels and acid nociception. Curr Pharm Des 15:1750–1766

    Article  CAS  PubMed  Google Scholar 

  45. Deval E, Noel J, Lay N et al (2008) ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 27:3047–3055

    Article  CAS  PubMed  Google Scholar 

  46. Sluka KA, Radhakrishnan R, Benson CJ et al (2007) ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 129:102–112

    Article  PubMed  Google Scholar 

  47. Babinski K, Le KT, Seguela P et al (1999) Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem 72:51–57

    Article  CAS  PubMed  Google Scholar 

  48. Woolf CJ, Costigan M (1999) Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci USA 96:7723–7730

    Article  CAS  PubMed  Google Scholar 

  49. Zhuo M et al (2002) Glutamate receptors and persistent pain: targeting forebrain NR2B subunits. Drug Discov Today 7:259–267

    Article  CAS  PubMed  Google Scholar 

  50. Yen YT, Tu PH, Chen CJ et al (2009) Role of acid-sensing ion channel 3 in sub-acute-phase inflammation. Mol Pain 5:1

    Article  PubMed  Google Scholar 

  51. Mogil JS, Breese NM, Witty MF et al (2005) Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci 25:9893–9901

    Article  CAS  PubMed  Google Scholar 

  52. Kuduk SD, Chang RK, Wai JM et al (2009) Amidine derived inhibitors of acid-sensing ion channel-3 (ASIC3). Bioorg Med Chem Lett 19:4059–4063

    Article  CAS  PubMed  Google Scholar 

  53. Jones NG, Slater R, Cadiou H et al (2004) Acid-induced pain and its modulation in humans. J Neurosci 24:10974–10979

    Article  CAS  PubMed  Google Scholar 

  54. Rocha-Gonzalez HI, Herrejon-Abreu EB, Lopez-Santillan FJ et al (2009) Acid increases inflammatory pain in rats: effect of local peripheral ASICs inhibitors. Eur J Pharmacol 603:56–61

    Article  CAS  PubMed  Google Scholar 

  55. Diochot S, Salinas M, Baron A et al (2007) Peptides inhibitors of acid-sensing ion channels. Toxicon 49:271–284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the China National Science Foundation grants no. 30901526 and no. 30873080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Hu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, FL., Chen, FH., Lu, WG. et al. Acid-sensing ion channels 3: a potential therapeutic target for pain treatment in arthritis. Mol Biol Rep 37, 3233–3238 (2010). https://doi.org/10.1007/s11033-009-9907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9907-6

Keywords

Navigation