Skip to main content
Log in

Investigation of LDHA and COPB1 as candidate genes for muscle development in the MYOD1 region of pig chromosome 2

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Porcine MYOD1 gene has been mapped to swine chromosome (SSC) 2p14-p17, which is involved in the regulation of the proliferation and differentiation of skeletal muscle cells. The LDHA (lactate dehydrogenase A) and COPB1 (coatomer protein complex, subunit beta 1) genes, which map close to MYOD1, are involved in energy metabolism and protein transport processes. Both genes might play important roles in muscle development. However, little is known about the porcine LDHA and COPB1 genes. In the present study, the full-length cDNA of these two genes were cloned. The mapping results demonstrated that porcine LDHA and COPB1 were all mapped to SSC 2p14-p17. In this region, there are several QTL for growth and carcass traits, including average backfat thickness, lean and fat percentage. The RT-PCR results revealed that both LDHA and COPB1 were highly expressed in porcine skeletal muscle tissues, implying their potential regulatory function of muscle development. LDHA and COPB1 were then mapped to the region and multipoint analyses generated a best sex-averaged map order of each gene between linked markers: MYOD1_75.2 cM _LDHA_79 cM _CSRP3_83.8 cM _TEF-1_86.5 cM _COPB1_90 cM. Association analyses revealed that the substitution of c.423A>G had a significant effect on average daily gain on test, average backfat thickness (BFT), loin muscle area, lumbar BFT, marbling score, tenth rib BFT, average drip loss and fiber type II ratio. The substitution of c.3096C>T had a significant effect on average BFT, lumbar BFT, tenth rib BFT, carcass weight and last rib BFT. Interestingly, both SNPs were all associated with average BFT, lumbar BFT and tenth rib BFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Urbański P, Kurył J (2004) Two new SNPs within exon 1 of the porcine MYOD1 (MYF3) gene and their frequencies in chosen pig breeds and lines. J Anim Breed Genet 121:204–208. doi:10.1111/j.1439-0388.2004.00458.x

    Article  Google Scholar 

  2. Cepica S, Yerle M, Stratil A, Schroffel J, Redl B (1999) Regional localization of porcine MYOD1, MYF5, LEP, UCP3 and LCN1 genes. Anim Genet 30:476–478. doi:10.1046/j.1365-2052.1999.00498-17.x

    CAS  PubMed  Google Scholar 

  3. de Koning DJ, Rattink AP, Harlizius B, van Arendonk JA, Brascamp EW, Groenen MA (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci USA 97:7947–7950. doi:10.1073/pnas.140216397

    Article  PubMed  Google Scholar 

  4. Malek M, Dekkers JC, Lee HK, Baas TJ, Rothschild MF (2001) A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm Genome 12:630–636. doi:10.1007/s003350020018

    Article  CAS  PubMed  Google Scholar 

  5. Malek M, Dekkers JC, Lee HK, Baas TJ, Prusa K, Huff-Lonergan E et al (2001) A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm Genome 12:637–645. doi:10.1007/s003350020019

    Article  CAS  PubMed  Google Scholar 

  6. Van Hall G (2000) Lactate as a fuel for mitochondrial respiration. Acta Physiol Scand 168:643–656. doi:10.1046/j.1365-201x.2000.00716.x

    Article  PubMed  Google Scholar 

  7. Campbell WG, Gordon SE, Carlson CJ, Pattison JS, Hamilton MT, Booth FW (2001) Differential global gene expression in red and white skeletal muscle. Am J Physiol Cell Physiol 280:C763–C768

    CAS  PubMed  Google Scholar 

  8. Sytnyk V, Leshchyns’ka I, Dityatev A, Schachner M (2004) Trans-Golgi network delivery of synaptic proteins in synaptogenesis. J Cell Sci 117:381–388. doi:10.1242/10.1242/jcs.00956

    Article  CAS  PubMed  Google Scholar 

  9. Nickel W, Brugger B, Wieland FT (2002) Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 115:3235–3240

    CAS  PubMed  Google Scholar 

  10. Letourneur F, Gaynor EC, Hennecke S, Demolliere C, Duden R, Emr SD et al (1994) Coatomer is essential for retrieval of di-lysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199–1207. doi:10.1016/0092-8674(94)90011-6

    Article  CAS  PubMed  Google Scholar 

  11. Xu XW, Xing S, Du ZQ, Rothschild MF, Yerle M, Liu B (2008) Porcine TEF1 and RTEF1: molecular characterization and association analyses with growth traits. Comparative biochemistry and physiology Part B. Biochem Mol Biol 150:447–453. doi:10.1016/j.cbpb.2008.05.003

    Article  Google Scholar 

  12. Xu XW, Qiu HF, Du ZQ, Fan B, Rothschild MF, Yuan F et al (2009) Porcine CSRP3: polymorphism and association analyses with meat quality traits and comparative analyses with CSRP1 and CSRP2. Mol Biol Rep. doi:10.1007/s11033-009-9632-1

  13. Wang H, Zhu Z, Wang H, Yang S, Mo D, Li K (2006) Characterization of different expression patterns of calsarcin-1 and calsarcin-2 in porcine muscle. Gene 374:104–111. doi:10.1016/j.gene.2006.01.035

    Article  CAS  PubMed  Google Scholar 

  14. Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C et al (1998) Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82:182–188. doi:10.1159/000015095

    Article  CAS  PubMed  Google Scholar 

  15. Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y et al (2000) IMpRH server: an RH mapping server available on the Web. Bioinformatics 16:558–559. doi:10.1093/bioinformatics/16.6.558

    Article  CAS  PubMed  Google Scholar 

  16. Green P, Falls K, Crooks S (1990) Documentation for CRIMAP, version 2.4. Washington University School of Medicine, St Louis, MO

    Google Scholar 

  17. Yu M, Geiger B, Deeb N, Rothschild MF (2007) Investigation of TXNIP (thioredoxin-interacting protein) and TRX (thioredoxin) genes for growth-related traits in pigs. Mamm Genome 18:197–209. doi:10.1007/s00335-007-9006-8

    Article  PubMed  Google Scholar 

  18. Xu XL, Xu XW, Pan PW, Li K, Jiang ZH, Yu M et al (2009) Porcine skeletal muscle differentially expressed gene CMYA1: isolation, characterization, mapping, expression and association analysis with carcass traits. Anim Genet 40:255–261. doi:10.1111/j.1365-2052.2008.01825.x

    Article  CAS  PubMed  Google Scholar 

  19. Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P et al (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36:252–262. doi:10.1006/geno.1996.0460

    Article  CAS  PubMed  Google Scholar 

  20. Gyapay G, Schmitt K, Fizames C, Jones H, Vega-Czarny N, Spillett D et al (1996) A radiation hybrid map of the human genome. Hum Mol Genet 5:339–346. doi:10.1093/hmg/5.3.339

    Article  CAS  PubMed  Google Scholar 

  21. Rattink AP, De Koning DJ, Faivre M, Harlizius B, van Arendonk JA, Groenen MA (2000) Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mamm Genome 11:656–661. doi:10.1007/s003350010117

    Article  CAS  PubMed  Google Scholar 

  22. Qu YC, Deng CY, Xiong YZ, Zheng R, Yu L, Su YH et al (2002) The construction of the genetic map and QTL locating analysis on chromosome 2 in swine. Yi Chuan Xue Bao 29:972–976

    PubMed  Google Scholar 

  23. Lee S, Chen Y, Moran C, Cepica S, Reiner G, Bartenschlager H et al (2003) Linkage and QTL mapping for Sus scrofa chromosome 2. J Anim Breed Genet 120:11–19. doi:10.1046/j.0931-2668.2003.00419.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, H., Xu, X., Fan, B. et al. Investigation of LDHA and COPB1 as candidate genes for muscle development in the MYOD1 region of pig chromosome 2. Mol Biol Rep 37, 629–636 (2010). https://doi.org/10.1007/s11033-009-9882-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9882-y

Keywords

Navigation