Skip to main content

Advertisement

Log in

XPD Lys751Gln and Asp312Asn polymorphisms and bladder cancer risk: a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Studies on the polymorphisms of Xeroderma Pigmentosum Group D (XPD) have shown inconclusive trends in the risk of bladder cancer. The purpose of this study is to evaluate the role of XPD single nucleotide polymorphisms in bladder cancer susceptibility. We performed a meta-analysis on all available studies, which included 5,368 and 6,683 XPD Lys751Gln cases and controls and 3,220 and 4,391 Asp312Asn cases and controls, respectively. Overall, Significant risk effects of Lys751Gln genotype was found under recessive model contrast [Gln/Gln vs. (Gln/Lys + Lys/Lys)] [P = 0.04, OR = 1.12; 95% CI (1.01, 1.26)], and subtle but insignificantly increased risks between Lys751Gln and bladder cancer were observed under allele contrast (Gln vs. Lys) and homologous contrast (Gln/Gln vs. Lys/Lys) in all subjects. The 751Gln allele had no significant effect on bladder cancer in all subgroups (Asian, Caucasian and USA). Significant risk effects of Asp312Asn polymorphism on bladder susceptibility were observed in all subjects under all genetic contrasts, however, stratified analyses showed that the 312Asn allele showed different risk effects in USA and Caucasian. The Gln/Gln genotype acts as a risk factor in its association with bladder cancer, and the effect of Lys751Gln polymorphism on bladder susceptibility should be studied with larger, stratified population; the 312Asn allele has an important role in the etiology of bladder cancer whereas the ethnic background should be carefully concerned in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanyal S, Festa F, Sakano S et al (2004) Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25:729–734

    Article  CAS  PubMed  Google Scholar 

  2. Cohen SM, Shirai T, Steineck G (2000) Epidemiology and etiology of premalignant and malignant urothelial changes. Scand J Urol Nephrol Suppl 205:105–115

    Article  PubMed  Google Scholar 

  3. Cavalieri E, Frenkel K, Liehr JG et al (2000) Estrogens as endogenous genotoxic agents—DNA adducts and mutations. J Natl Cancer Inst Monogr 27:75–93

    CAS  PubMed  Google Scholar 

  4. Johnson-Thompson MC, Guthrie J (2000) Ongoing research to identify environmental risk factors in breast carcinoma. Cancer 88:1224–1229

    Article  CAS  PubMed  Google Scholar 

  5. Berwick M, Matullo G, Vineis P (2002) Studies of DNA repair and human cancer: an update. Lewis, Boca Raton

    Google Scholar 

  6. Squire JA, Whitmore GF, Phillips RA (1998) Genetic basis of cancer. In: Hill RP, Tannock IF (eds) The basic science of oncology. McGraw-Hill, New York, pp 48–78

    Google Scholar 

  7. Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22–33

    Article  CAS  PubMed  Google Scholar 

  8. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11:1513–1530

    CAS  PubMed  Google Scholar 

  9. Benhamou S, Sarasin A (2002) ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 17:463–469

    Article  CAS  PubMed  Google Scholar 

  10. Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–608

    CAS  PubMed  Google Scholar 

  11. Shao J, Gu M, Xu Z et al (2007) Polymorphisms of the DNA gene XPD and risk of bladder cancer in a Southeastern Chinese population. Cancer Genet Cytogenet 177:30–36

    Article  CAS  PubMed  Google Scholar 

  12. Stern MC, Johnson LR, Bell DA et al (2002) XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 11:1004–1011

    CAS  PubMed  Google Scholar 

  13. Fontana L, Bosviel R, Delort L et al (2008) DNA repair gene ERCC2, XPC, XRCC1, XRCC3 polymorphisms and associations with bladder cancer risk in a French cohort. Anticancer Res 28:1853–1856

    CAS  PubMed  Google Scholar 

  14. Schabath MB, Delclos GL, Grossman HB et al (2005) Polymorphisms in XPD exons 10 and 23 and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 14:878–884

    Article  CAS  PubMed  Google Scholar 

  15. Matullo G, Guarrera S, Sacerdote C et al (2005) Polymorphisms/haplotypes in DNA repair genes and smoking: a bladder cancer case–control study. Cancer Epidemiol Biomarkers Prev 14:2569–2578

    Article  CAS  PubMed  Google Scholar 

  16. Andrew AS, Karagas MR, Nelson HH et al (2008) DNA repair polymorphisms modify bladder cancer risk: a multi-factor analytic strategy. Hum Hered 65:105–118

    Article  CAS  PubMed  Google Scholar 

  17. Wu X, Gu J, Grossman HB et al (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78:464–479

    Article  CAS  PubMed  Google Scholar 

  18. Gangwar R, Ahirwar D, Mandhani A et al (2009) Influence of XPD and APE1 DNA repair gene polymorphism on bladder cancer susceptibility in north India. Urology 73:675–680

    Article  PubMed  Google Scholar 

  19. Matullo G, Dunning AM, Guarrera S et al (2006) DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis 27:997–1007

    Article  CAS  PubMed  Google Scholar 

  20. Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127:820–826

    CAS  PubMed  Google Scholar 

  21. Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  22. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  23. Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    CAS  PubMed  Google Scholar 

  24. Matullo G, Guarrera S, Carturan S et al (2001) DNA repair gene polymorphisms, bulky DNA adducts in white blood cells and bladder cancer in a case–control study. Int J Cancer 92:562–567

    Article  CAS  PubMed  Google Scholar 

  25. García-Closas M, Malats N, Real FX et al (2006) Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15:536–542

    Article  PubMed  Google Scholar 

  26. Narter KF, Ergen A, Agaçhan B et al (2009) Bladder cancer and polymorphisms of DNA repair genes (XRCC1, XRCC3, XPD, XPG, APE1, hOGG1). Anticancer Res 29:1389–1393

    CAS  PubMed  Google Scholar 

  27. Shen M, Hung RJ, Brennan P et al (2003) Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case–control study in northern Italy. Cancer Epidemiol Biomarkers Prev 12:1234–1240

    CAS  PubMed  Google Scholar 

  28. Andrew AS, Nelson HH, Kelsey KT et al (2006) Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis 27:1030–1037

    Article  CAS  PubMed  Google Scholar 

  29. Weber CA, Salazar EP, Stewart SA et al (1988) Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells. Mol Cell Biol 8:1137–1146

    CAS  PubMed  Google Scholar 

  30. Laine JP, Mocquet V, Egly JM (2006) TFIIH enzymatic activities in transcription and nucleotide excision repair. Methods Enzymol 408:246–263

    Article  PubMed  Google Scholar 

  31. Wang XW, Vermeulen W, Coursen JD et al (1996) The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev 10:1219–1232

    Article  CAS  PubMed  Google Scholar 

  32. Lehmann AR (2001) The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev 15:15–23

    Article  CAS  PubMed  Google Scholar 

  33. Coin F, Marinoni JC, Rodolfo C et al (1998) Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet 20:184–188

    Article  CAS  PubMed  Google Scholar 

  34. Au WW, Navasumrit P, Ruchirawat M (2004) Use of biomarkers to characterize functions of polymorphic DNA repair genotypes. Int J Hyg Environ Health 207:301–313

    Article  CAS  PubMed  Google Scholar 

  35. Vodicka P, Kumar R, Stetina R et al (2004) Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis 25:757–763

    Article  CAS  PubMed  Google Scholar 

  36. Pavanello S, Pulliero A, Siwinska E et al (2005) Reduced nucleotide excision repair and GSTM1-null genotypes influence anti-β [α] PDE-DNA adduct levels in mononuclear white blood cells of highly PAH-exposed coke oven workers. Carcinogenesis 26:169

    Article  CAS  PubMed  Google Scholar 

  37. Wang M, Gu D, Zhang Z et al (2009) XPD polymorphisms, cigarette smoking, and bladder cancer risk: a meta-analysis. J Toxicol Environ Health A 72:698–705

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Jiang, Z. & Liu, X. XPD Lys751Gln and Asp312Asn polymorphisms and bladder cancer risk: a meta-analysis. Mol Biol Rep 37, 301–309 (2010). https://doi.org/10.1007/s11033-009-9693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9693-1

Keywords

Navigation