Skip to main content

Advertisement

Log in

Gene expression profiles in the prefrontal cortex of SHR rats by cDNA microarrays

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We have undertaken cDNA microarrays to identify differentially expressed genes in the prefrontal cortex (PFC) of spontaneously hypertensive-rat (SHR), a rodent model of attention deficit hyperactivity disorder (ADHD) versus control Wistar-Kyoto (WKY) rats. The analysis of the gene expression profiles indicated that 57 genes were up-regulated and 97 genes were down-regulated in the PFC of SHR. These predominately expressed genes included genes involved in neural development, immunity, transcription factor, monoamine neurotransmitter, metabolism, signal transduction, apoptosis and so on. Although more detailed analyses are necessary, it is anticipated that further study of genes identified will provide insights into their specific roles in the etiology of ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366:237–248. doi:10.1016/S0140-6736(05)66915-2

    Article  PubMed  Google Scholar 

  2. Doyle AE, Willcutt EG, Seidman LJ et al (2005) Attention-deficit/hyperactivity disorder endophenotypes. Biol Psychiatry 57:1324–1335. doi:10.1016/j.biopsych.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  3. Biederman J (2005) Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 57:1215–1220. doi:10.1016/j.biopsych.2004.10.020

    Article  PubMed  Google Scholar 

  4. Larsson JO, Larsson H, Lichtenstein P (2004) Genetic and environmental contributions to stability and change of ADHD symptoms between 8 and 13 years of age: a longitudinal twin study. J Am Acad Child Adolesc Psychiatry 43:1267–1275. doi:10.1097/01.chi.0000135622.05219.bf

    Article  PubMed  Google Scholar 

  5. Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24:31–39. doi:10.1016/S0149-7634(99)00058-5

    Article  CAS  PubMed  Google Scholar 

  6. Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M (2005) Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1239–1247. doi:10.1016/j.biopsych.2005.02.002

    Article  PubMed  Google Scholar 

  7. Sagvolden T, Metzger MA, Schiorbeck HK, Rugland AL, Spinnangr I, Sagvolden G (1992) The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol 58:103–112. doi:10.1016/0163-1047(92)90315-U

    Article  CAS  PubMed  Google Scholar 

  8. Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol 53:88–102. doi:10.1016/0163-1047(90)90848-Z

    Article  CAS  PubMed  Google Scholar 

  9. Hunziker MH, Saldana RL, Neuringer A (1996) Behavioral variability in SHR and WKY rats as a function of rearing environment and reinforcement contingency. J Exp Anal Behav 65:129–144. doi:10.1901/jeab.1996.65-129

    Article  CAS  PubMed  Google Scholar 

  10. Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G (2003) The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev 27:639–651. doi:10.1016/j.neubiorev.2003.08.007

    Article  PubMed  Google Scholar 

  11. Sagvolden T, Pettersen MB, Larsen MC (1993) Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav 54:1047–1055. doi:10.1016/0031-9384(93)90323-8

    Article  CAS  PubMed  Google Scholar 

  12. Wiersema JR, van der Meere JJ, Roeyers H (2005) ERP correlates of impaired error monitoring in children with ADHD. J Neural Transm 112:1417–1430. doi:10.1007/s00702-005-0276-6

    Article  CAS  PubMed  Google Scholar 

  13. Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    CAS  PubMed  Google Scholar 

  14. Printz MP, Jirout M, Jaworski R, Alemayehu A, Kren V (2003) Genetic models in applied physiology. HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J Appl Physiol 94:2510–2522. doi:10.1063/1.1590051

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan RM, Brake WG (2003) What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder: the critical role of early developmental events on prefrontal function. Behav Brain Res 146:43–55. doi:10.1016/j.bbr.2003.09.015

    Article  PubMed  Google Scholar 

  16. Russell VA (2002) Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder–the spontaneously hypertensive rat. Behav Brain Res 130:191–196. doi:10.1016/S0166-4328(01)00425-9

    Article  CAS  PubMed  Google Scholar 

  17. Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1:2. doi:10.1186/1744-9081-1-2

    Article  PubMed  Google Scholar 

  18. Castellanos FX, Giedd JN, Marsh WL et al (1996) Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry 53:607–616

    CAS  PubMed  Google Scholar 

  19. Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628

    CAS  PubMed  Google Scholar 

  20. Asselbergs FA, Widmer R (2003) Rapid detection of apoptosis through real-time reverse transcriptase polymerase chain reaction measurement of the small cytoplasmic RNA Y1. Anal Biochem 318:221–229. doi:10.1016/S0003-2697(03)00218-5

    Article  CAS  PubMed  Google Scholar 

  21. Odell JD, Warren RP, Warren WL, Burger RA, Maciulis A (1997) Association of genes within the major histocompatibility complex with attention deficit hyperactivity disorder. Neuropsychobiology 35:181–186. doi:10.1159/000119342

    Article  CAS  PubMed  Google Scholar 

  22. Castro E, Tordera RM, Hughes ZA, Pei Q, Sharp T (2003) Use of Arc expression as a molecular marker of increased postsynaptic 5-HT function after SSRI/5-HT1A receptor antagonist co-administration. J Neurochem 85:1480–1487. doi:10.1046/j.1471-4159.2003.01782.x

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Nicolini V, McGinty JF (2002) Gene expression profile from the striatum of amphetamine-treated rats: a cDNA array and in situ hybridization histochemical study. Brain Res Gene Expr Patterns 1:193–198. doi:10.1016/S1567-133X(02)00017-0

    Article  CAS  PubMed  Google Scholar 

  24. Fujiyama K, Kajii Y, Hiraoka S, Nishikawa T (2003) Differential regulation by stimulants of neocortical expression of mrt1, arc, and homer1a mRNA in the rats treated with repeated methamphetamine. Synapse 49:143–149. doi:10.1002/syn.10220

    Article  CAS  PubMed  Google Scholar 

  25. Vazdarjanova A, McNaughton BL, Barnes CA, Worley PF, Guzowski JF (2002) Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks. J Neurosci 22:10067–10071

    CAS  PubMed  Google Scholar 

  26. Xiao Q, Castillo SO, Nikodem VM (1996) Distribution of messenger RNAs for the orphan nuclear receptors Nurr1 and Nur77 (NGFI-B) in adult rat brain using in situ hybridization. Neuroscience 75:221–230. doi:10.1016/0306-4522(96)00159-5

    Article  CAS  PubMed  Google Scholar 

  27. Freeman WM, Brebner K, Lynch WJ et al (2002) Changes in rat frontal cortex gene expression following chronic cocaine. Brain Res Mol Brain Res 104:11–20. doi:10.1016/S0169-328X(02)00197-3

    Article  CAS  PubMed  Google Scholar 

  28. Tremblay M, Rouillard C, Levesque D (1999) Dopamine D3 receptor antisense administration reduces basal c-fos and NGFI-B mRNA levels in the rat forebrain. Synapse 32:51–57. doi:10.1002/(SICI)1098-2396(199904)32:1<51::AID-SYN7>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  29. Brakeman PRLA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288. doi:10.1038/386284a0

    Article  CAS  PubMed  Google Scholar 

  30. Xiao BTJ, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related synaptic proteins. Neuron 21:707–716. doi:10.1016/S0896-6273(00)80588-7

    Article  CAS  PubMed  Google Scholar 

  31. Lominac KD, Oleson EB, Pava M et al (2005) Distinct roles for different Homer1 isoforms in behaviors and associated prefrontal cortex function. J Neurosci 25:11586–11594. doi:10.1523/JNEUROSCI.3764-05.2005

    Article  CAS  PubMed  Google Scholar 

  32. Szumlinski KK, Dehoff MH, Kang SH et al (2004) Homer proteins regulate sensitivity to cocaine. Neuron 43:401–413. doi:10.1016/j.neuron.2004.07.019

    Article  CAS  PubMed  Google Scholar 

  33. Szumlinski KK, Lominac KD, Oleson EB et al (2005) Homer2 is necessary for EtOH-induced neuroplasticity. J Neurosci 25:7054–7061. doi:10.1523/JNEUROSCI.1529-05.2005

    Article  CAS  PubMed  Google Scholar 

  34. Zhang GC, Mao LM, Liu XY et al (2007) In vivo regulation of Homer1a expression in the striatum by cocaine. Mol Pharmacol 71:1148–1158. doi:10.1124/mol.106.028399

    Article  CAS  PubMed  Google Scholar 

  35. Bobb AJ, Castellanos FX, Addington AM, Rapoport JL (2005) Molecular genetic studies of ADHD: 1991 to 2004. Am J Med Genet B Neuropsychiatr Genet 132B:109–125

    PubMed  Google Scholar 

  36. Cook EH Jr, Stein MA, Krasowski MD et al (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56:993–998

    CAS  PubMed  Google Scholar 

  37. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354:2132–2133. doi:10.1016/S0140-6736(99)04030-1

    Article  CAS  PubMed  Google Scholar 

  38. Kirley A, Lowe N, Hawi Z et al (2003) Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet B Neuropsychiatr Genet 121B:50–54. doi:10.1002/ajmg.b.20071

    Article  PubMed  Google Scholar 

  39. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K (2000) Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 285:107–110. doi:10.1016/S0304-3940(00)01040-5

    Article  CAS  PubMed  Google Scholar 

  40. Quist JF, Barr CL, Schachar R et al (2000) Evidence for the serotonin HTR2A receptor gene as a susceptibility factor in attention deficit hyperactivity disorder (ADHD). Mol Psychiatry 5:537–541. doi:10.1038/sj.mp.4000779

    Article  CAS  PubMed  Google Scholar 

  41. Levitan RD, Masellis M, Basile VS et al (2002) Polymorphism of the serotonin-2A receptor gene (HTR2A) associated with childhood attention deficit hyperactivity disorder (ADHD) in adult women with seasonal affective disorder. J Affect Disord 71:229–233. doi:10.1016/S0165-0327(01)00372-X

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Kang C, Wang Y et al (2006) Contribution of 5-HT2A receptor gene -1438A>G polymorphism to outcome of attention-deficit/hyperactivity disorder in adolescents. Am J Med Genet B Neuropsychiatr Genet 141B:473–476. doi:10.1002/ajmg.b.30320

    Article  CAS  PubMed  Google Scholar 

  43. Oades RD, Lasky-Su J, Christiansen H et al (2008) The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): findings from a family-based association test (FBAT) analysis. Behav Brain Funct 4:48. doi:10.1186/1744-9081-4-48

    Article  PubMed  Google Scholar 

  44. Lazzell DR, Belizaire R, Thakur P, Sherry DM, Janz R (2004) SV2B regulates synaptotagmin 1 by direct interaction. J Biol Chem 279:52124–52131. doi:10.1074/jbc.M407502200

    Article  CAS  PubMed  Google Scholar 

  45. de Bartolomeis A, Iasevoli F (2003) The Homer family and the signal transduction system at glutamatergic postsynaptic density: potential role in behavior and pharmacotherapy. Psychopharmacol Bull 37:51–83

    PubMed  Google Scholar 

  46. Bazar KA, Yun AJ, Lee PY, Daniel SM, Doux JD (2006) Obesity and ADHD may represent different manifestations of a common environmental oversampling syndrome: a model for revealing mechanistic overlap among cognitive, metabolic, and inflammatory disorders. Med Hypotheses 66:263–269. doi:10.1016/j.mehy.2005.02.042

    Article  PubMed  Google Scholar 

  47. Leslie DL, Kozma L, Martin A et al (2008) Neuropsychiatric disorders associated with streptococcal infection: a case-control study among privately insured children. J Am Acad Child Adolesc Psychiatry 47(10):1166–1172

    Article  PubMed  Google Scholar 

  48. Pelsser LM, Buitelaar JK, Savelkoul HF (2009) ADHD as a (non) allergic hypersensitivity disorder: a hypothesis. Pediatr Allergy Immunol 20(2):107–112

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No 30801255), the Natural Science Foundation of Jiangsu Province, China (BK2006009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-rong Guo or Xia Chi.

Additional information

The authors Jie Qiu and Qin Hong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Hong, Q., Chen, Rh. et al. Gene expression profiles in the prefrontal cortex of SHR rats by cDNA microarrays. Mol Biol Rep 37, 1733–1740 (2010). https://doi.org/10.1007/s11033-009-9596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9596-1

Keywords

Navigation