Skip to main content
Log in

Chronic exposure to exogenous matrilysin induces chemoresistance and enhances Bcl-2 expression in A549 lung adenocarcinoma cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Matrix metalloproteinase (MMP) family member matrilysin (matrilysin) has been indicated to induce apoptosis-resistance and chemoresistance. The purpose of current study was to investigate the potential capacity of induction cisplatin-resistance upon the unremitting exposure to exogenic matrilysin. At the same time, the expressions of apoptosis-related genes were examined to clarify the underlying mechanisms. A549 lung adenocarcinoma cells was used to establish our chronic exposure models. The viability of A549 lung adenocarcinoma cells was determinated by MTT and the apoptosis was assessed by Hoechst 33342 staining and Annexin V-FITC/PI apoptosis kit. The expressions of apoptosis-relative genes were evaluated by flow cytometry, immunocytochemistry staining and real-time quantitative RT-PCR, respectively. Overall, chronic exposure to crescenting level of exogenous matrilysin (10, 50, 100, 200 ng/ml) did not significantly alter the growth rates of A549 cells. However, a certain range of matrilysin might protect tumor cells from cisplatin-medicated death. The underlying mechanism may due to the Bcl-2 overexpression and imbalance in the ratio of Bcl-2/Bax. Our results offer a potential mechanism to explain the impact of matrilysin on apoptosis and provide new insights into the profound mechanisms of acquired cisplatin-resistance. Further researches are highly suggestive of this association which has great clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wilson CL, Ouellette AJ, Satchell DP et al (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117. doi:10.1126/science.286.5437.113

    Article  CAS  PubMed  Google Scholar 

  2. Burke B (2004) The role of matrix metalloproteinase 7 in innate immunity. Immunobiology 209:51–56. doi:10.1016/j.imbio.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  3. Wielockx B, Libert C, Wilson C (2004) Matrilysin (matrix metalloproteinase-7): a new promising drug target in cancer and inflammation? Cytokine Growth Factor Rev 15:111–115. doi:10.1016/j.cytogfr.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  4. Basset P, Bellocq JP, Wolf C et al (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699–704. doi:10.1038/348699a0

    Article  CAS  PubMed  Google Scholar 

  5. Heppner KJ, Matrisian LM, Jensen RA et al (1996) Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 149:273–282

    CAS  PubMed  Google Scholar 

  6. McCaig C, Duval C, Hemers E et al (2006) The role of matrix metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology 130:1754–1763. doi:10.1053/j.gastro.2006.02.031

    Article  CAS  PubMed  Google Scholar 

  7. Rudolph-Owen LA, Chan R, Muller WJ et al (1998) The matrix metalloproteinase matrilysin influences early stage mammary tumorigenesis. Cancer Res 58:5500–5506

    CAS  PubMed  Google Scholar 

  8. Wang XY, Dakir el H, Naizhen X et al (2007) Achaete-scute homolog-1 linked to remodeling and preneoplasia of pulmonary epithelium. Lab Invest 87:527–539. doi:10.1038/labinvest.3700552

    Article  CAS  PubMed  Google Scholar 

  9. Rintoul RC, Sethi T (2002) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Clin Sci (Lond) 102:417–424. doi:10.1042/CS20010216

    Article  CAS  Google Scholar 

  10. Sethi T, Rintoul RC, Moore SM et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5:662–668. doi:10.1038/9511

    Article  CAS  PubMed  Google Scholar 

  11. Liu H, Huang J, Wu B et al (2008) Matrilysin inhibits proliferation and modulates sensitivity of lung cancer cells to FasL-mediated apoptosis. Med Oncol 25:419–430

    Article  PubMed  CAS  Google Scholar 

  12. Mitsiades N, Yu WH, Poulaki V et al (2001) Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 61:577–581

    CAS  PubMed  Google Scholar 

  13. Vargo-Gogola T, Fingleton B, Crawford HC et al (2002) Matrilysin (matrix metalloproteinase-7) selects for apoptosis-resistant mammary cells in vivo. Cancer Res 62:5559–5563

    CAS  PubMed  Google Scholar 

  14. Almendro V, Maurel J, Augé J et al (2006) Role of metalloproteinase-7 in oxaliplatin acquired resistance in colorectal cancer cell lines. ASCO Meeting Abstracts 24: 20042

    Google Scholar 

  15. Shiomi T, Inoki I, Kataoka F et al (2005) Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest 85:1489–1506

    CAS  PubMed  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) methods. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  17. Oltvai ZN, Korsmeyer SJ (1994) Checkpoints of dueling dimers foil death wishes. Cell 79:189–192. doi:10.1016/0092-8674(94)90188-0

    Article  CAS  PubMed  Google Scholar 

  18. Wang G, Reed E, Li QQ (2004) Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer. Oncol Rep 12:955–965

    CAS  PubMed  Google Scholar 

  19. Tortora G, Caputo R, Damiano V et al (2003) Combined targeted inhibition of bcl-2, bcl-xL, epidermal growth factor receptor, and protein kinase A type I causes potent antitumor, apoptotic, and antiangiogenic activity. Clin Cancer Res 9:866–871

    CAS  PubMed  Google Scholar 

  20. Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195:158–167. doi:10.1002/jcp.10254

    Article  CAS  PubMed  Google Scholar 

  21. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279. doi:10.1038/sj.onc.1206933

    Article  CAS  PubMed  Google Scholar 

  22. Ikuta K, Takemura K, Kihara M et al (2005) Defects in apoptotic signal transduction in cisplatin-resistant non-small cell lung cancer cells. Oncol Rep 13:1229–1234

    CAS  PubMed  Google Scholar 

  23. Huang Z, Lei X, Zhong M et al (2007) Bcl-2 small interfering RNA sensitizes cisplatin-resistant human lung adenocarcinoma A549/DDP cell to cisplatin and diallyl disulfide. Acta Biochim Biophys Sin (Shanghai) 39:835–843. doi:10.1111/j.1745-7270.2007.00356.x

    Article  CAS  Google Scholar 

  24. Losert D, Pratscher B, Soutschek J et al (2007) Bcl-2 downregulation sensitizes nonsmall cell lung cancer cells to cisplatin, but not to docetaxel. Anticancer Drugs 18:755–761. doi:10.1097/CAD.0b013e3280adc8c8

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Zhang T, Li X et al (2008) Predictive value of MMP-7 expression for response to chemotherapy and survival in patients with non-small cell lung cancer. Cancer Sci 99:2185–2192

    Article  CAS  PubMed  Google Scholar 

  26. Crawford HC, Scoggins CR, Washington MK et al (2002) Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J Clin Invest 109:1437–1444

    CAS  PubMed  Google Scholar 

  27. Wang FQ, So J, Reierstad S, Fishman DA (2005) Matrilysin (matrilysin) promotes invasion of ovarian cancer cells by activation of progelatinase. Int J Cancer 114:19–31. doi:10.1002/ijc.20697

    Article  CAS  PubMed  Google Scholar 

  28. Choi J, Choi K, Benveniste EN et al (2005) Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Res 65:5554–5560. doi:10.1158/0008-5472.CAN-04-4570

    Article  CAS  PubMed  Google Scholar 

  29. Tan X, Egami H, Abe M et al (2005) Involvement of matrilysin in invasion of pancreatic cancer cells through activation of the EGFR mediated MEK-ERK signal transduction pathway. J Clin Pathol 58:1242–1248. doi:10.1136/jcp.2004.025338

    Article  CAS  PubMed  Google Scholar 

  30. Knott AW, Juno RJ, Jarboe MD et al (2003) EGF receptor signaling affects bcl-2 family gene expression and apoptosis after massive small bowel resection. J Pediatr Surg 38:875–880. doi:10.1016/S0022-3468(03)00114-3

    Article  PubMed  Google Scholar 

  31. Sawey ET, Johnson JA, Crawford HC (2007) Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc Natl Acad Sci USA 104:19327–19332. doi:10.1073/pnas.0705953104

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Zhang Y, Li Y et al (2006) Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther 5:483–493. doi:10.1158/1535-7163.MCT-05-0299

    Article  CAS  PubMed  Google Scholar 

  33. Yukiue H, Moiriyama S, Kobayashi Y et al (2001) Clinical significance of matrix metalloproteinase-7 and Ets-1 gene expression in patients with lung cancer. J Surg Res 101:242–247. doi:10.1006/jsre.2001.6279

    Article  PubMed  CAS  Google Scholar 

  34. Wilson LA, Yamamoto H, Singh G (2004) Role of the transcription factor Ets-1 in cisplatin resistance. Mol Cancer Ther 3:823–832

    CAS  PubMed  Google Scholar 

  35. Tan X, Egami H, Abe M, Nozawa F, Hirota M, Ogawa M (2005) Involvement of matrilysin in invasion of pancreatic cancer cells through activation of the EGFR mediated MEK-ERK signal transduction pathway. J Clin Pathol 58:1242–1248. doi:10.1136/jcp.2004.025338

    Article  CAS  PubMed  Google Scholar 

  36. Andrieux LO, Fautrel A, Bessard A et al (2007) GATA-1 is essential in EGF-mediated induction of nucleotide excision repair activity and ERCC1 expression through ERK2 in human hepatoma cells. Cancer Res 67:2114–2123. doi:10.1158/0008-5472.CAN-06-3821

    Article  CAS  PubMed  Google Scholar 

  37. Liu D, Nakano J, Ishikawa S, Yokomise H, Ueno M, Kadota K, Urushihara M, Huang CL (2007) Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer 58:384–391. doi:10.1016/j.lungcan.2007.07.005

    Article  PubMed  Google Scholar 

  38. Leinonen T, Pirinen R, Bohm J, Johansson R, Ropponen K, Kosma VM (2006) Expression of matrix metalloproteinases 7 and 9 in non-small cell lung cancer. Relation to clinicopathological factors, beta-catenin and prognosis. Lung Cancer 51:313–321. doi:10.1016/j.lungcan.2005.11.002

    Article  PubMed  Google Scholar 

  39. Maurel J, Nadal C, Garcia-Albeniz X et al (2007) Serum matrix metalloproteinase 7 levels identifies poor prognosis advanced colorectal cancer patients. Int J Cancer 121:1066–1071. doi:10.1002/ijc.22799

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiantuo Zhang.

Additional information

This work was supported by Medical Scientific Research Foundation of Guangdong Province, China (No. B2008047).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Zhang, T., Wu, B. et al. Chronic exposure to exogenous matrilysin induces chemoresistance and enhances Bcl-2 expression in A549 lung adenocarcinoma cells. Mol Biol Rep 36, 2099–2109 (2009). https://doi.org/10.1007/s11033-008-9422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9422-1

Keywords

Navigation