Skip to main content
Log in

Silencing GIRK4 expression in human atrial myocytes by adenovirus-delivered small hairpin RNA

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

GIRK4 has been shown to be a subunit of IKACh, and the use of GIRK4 in human atrial myocytes to treat arrhythmia remains an important research pursuit. Adenovirus-delivered small hairpin RNA (shRNA) has been used to mediate gene knockdown in mouse cardiocytes, yet there is no information on the successful application of this technique in human cardiocytes. In the current study, we used a siRNA validation system to select the most efficient sequence for silencing GIRK4. To this end, adenovirus-delivered shRNA, which expresses this sequence, was used to silence GIRK4 expression in human atrial myocytes. Finally, the feasibility, challenges, and results of silencing GIRK4 expression were evaluated by RT-PCR, western blotting, and the voltage-clamp technique. The levels of mRNA and protein were depressed significantly in cells infected by adenovirus-delivered shRNA against GIRK4, approximately 86.3% and 51.1% lower than those cells infected by adenovirus-delivered nonsense shRNA, respectively. At the same time, IKACh densities were decreased 53% by adenovirus-delivered shRNA against GIRK4. In summary, adenovirus-delivered shRNA against GIRK4 mediated efficient GIRK4 knockdown in human atrial myocytes and decreased IKACh densities. As such, these data indicated that adenovirus-delivered shRNA against GIRK4 is a potential tool for treating arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi:10.1038/35888

    Article  PubMed  CAS  Google Scholar 

  2. Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213. doi:10.1016/S1046-2023(02)00023-3

    Article  PubMed  CAS  Google Scholar 

  3. Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114. doi:10.1016/S0896-6273(00)80438-9

    Article  PubMed  CAS  Google Scholar 

  4. Kovoor P, Wickman K, Maguire CT, Pu W, Gehrmann J, Berul CI et al (2001) Evaluation of the role of I(KACh) in atrial fibrillation using a mouse knockout model. J Am Coll Cardiol 37:2136–2143. doi:10.1016/S0735-1097(01)01304-3

    Article  PubMed  CAS  Google Scholar 

  5. Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T et al (2005) The G protein-gated potassium current I (K, ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation 112:3697–3706. doi:10.1161/CIRCULATIONAHA.105.575332

    Article  PubMed  CAS  Google Scholar 

  6. Kurachi Y, Tung RT, Ito H, Nakajima T (1992) G protein activation of cardiac muscarinic K+ channels. Prog Neurobiol 39:229–246. doi:10.1016/0301-0082(92)90017-9

    Article  PubMed  CAS  Google Scholar 

  7. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY (1993) Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364:802–806. doi:10.1038/364802a0

    Article  PubMed  CAS  Google Scholar 

  8. Dascal N, Schreibmayer W, Lim NF, Wang W, Chavkin C, DiMagno L et al (1993) Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc Natl Acad Sci USA 90:10235–10239. doi:10.1073/pnas.90.21.10235

    Article  PubMed  CAS  Google Scholar 

  9. Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature 374:135–141. doi:10.1038/374135a0

    Article  PubMed  CAS  Google Scholar 

  10. Hedin KE, Lim NF, Clapham DE (1996) Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16:423–429. doi:10.1016/S0896-6273(00)80060-4

    Article  PubMed  CAS  Google Scholar 

  11. Kennedy ME, Nemec J, Clapham DE (1996) Localization and interaction of epitope-tagged GIRK1 and CIR inward rectifier K+ channel subunits. Neuropharmacology 35:831–839. doi:10.1016/0028-3908(96)00132-3

    Article  PubMed  CAS  Google Scholar 

  12. Ikeda SR, Jeong SW, Kammermeier PJ, Ruiz-Velasco V, King MM (1999) Heterologous expression of a green fluorescent protein-pertussis toxin S1 subunit fusion construct disrupts calcium channel modulation in rat superior cervical ganglion neurons. Neurosci Lett 271:163–166. doi:10.1016/S0304-3940(99)00555-8

    Article  PubMed  CAS  Google Scholar 

  13. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958. doi:10.1101/gad.981002

    Article  PubMed  CAS  Google Scholar 

  14. Benardeau A, Hatem SN, Rucker-Martin C, Tessier S, Dinanian S, Samuel JL et al (1997) Primary culture of human atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardium. J Mol Cell Cardiol 29:1307–1320. doi:10.1006/jmcc.1996.0366

    Article  PubMed  CAS  Google Scholar 

  15. Bird SD, Doevendans PA, van Rooijen MA, Brutel de la Riviere A, Hassink RJ, Passier R et al (2003) The human adult cardiomyocyte phenotype. Cardiovasc Res 58:423–434. doi:10.1016/S0008-6363(03)00253-0

    Article  PubMed  CAS  Google Scholar 

  16. Ng P, Parks RJ, Cummings DT, Evelegh CM, Sankar U, Graham FL (1999) A high-efficiency Cre/loxP-based system for construction of adenoviral vectors. Hum Gene Ther 10:2667–2672. doi:10.1089/10430349950016708

    Article  PubMed  CAS  Google Scholar 

  17. Kohout TA, O’Brian JJ, Gaa ST, Lederer WJ, Rogers TB (1996) Novel adenovirus component system that transfects cultured cardiac cells with high efficiency. Circ Res 78:971–977

    PubMed  CAS  Google Scholar 

  18. Lipardi C, Wei Q, Paterson BM (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107:297–307. doi:10.1016/S0092-8674(01)00537-2

    Article  PubMed  CAS  Google Scholar 

  19. Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L et al (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476. doi:10.1016/S0092-8674(01)00576-1

    Article  PubMed  CAS  Google Scholar 

  20. Kumar R, Conklin DS, Mittal V (2003) High-throughput selection of effective RNAi probes for gene silencing. Genome Res 13:2333–2340. doi:10.1101/gr.1575003

    Article  PubMed  CAS  Google Scholar 

  21. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747. doi:10.1038/nrg908

    Article  PubMed  CAS  Google Scholar 

  22. Matsuda S, Ichigotani Y, Okuda T, Irimura T, Nakatsugawa S, Hamaguchi M (2000) Molecular cloning and characterization of a novel human gene (HERNA) which encodes a putative RNA-helicase. Biochim Biophys Acta 1490:163–169

    PubMed  CAS  Google Scholar 

  23. Sago N, Omi K, Tamura Y, Kunugi H, Toyo-oka T, Tokunaga K et al (2004) RNAi induction and activation in mammalian muscle cells where Dicer and eIF2C translation initiation factors are barely expressed. Biochem Biophys Res Commun 319:50–57. doi:10.1016/j.bbrc.2004.04.151

    Article  PubMed  CAS  Google Scholar 

  24. Nicholson RH, Nicholson AW (2002) Molecular characterization of a mouse cDNA encoding Dicer, a ribonuclease III ortholog involved in RNA interference. Mamm Genome 13:67–73. doi:10.1007/s00335-001-2119-6

    Article  PubMed  CAS  Google Scholar 

  25. Dobrev D, Graf E, Wettwer E, Himmel HM, Hala O, Doerfel C et al (2001) Molecular basis of downregulation of G-protein-coupled inward rectifying K(+) current (I(KACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(KACh) and muscarinic receptor-mediated shortening of action potentials. Circulation 104:2551–2557. doi:10.1161/hc4601.09946

    Article  PubMed  CAS  Google Scholar 

  26. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498. doi:10.1038/35078107

    Article  PubMed  CAS  Google Scholar 

  27. Bettahi I, Marker CL, Roman MI, Wickman K (2002) Contribution of the Kir3.1 subunit to the muscarinic-gated atrial potassium channel IKACh. J Biol Chem 277:48282–48288. doi:10.1074/jbc.M209599200

    Article  PubMed  CAS  Google Scholar 

  28. Kennedy ME, Nemec J, Corey S, Wickman K, Clapham DE (1999) GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels. J Biol Chem 274:2571–2582. doi:10.1074/jbc.274.4.2571

    Article  PubMed  CAS  Google Scholar 

  29. Brundel BJ, Van Gelder IC, Henning RH, Tuinenburg AE, Wietses M, Grandjean JG et al (2001) Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol 37:926–932. doi:10.1016/S0735-1097(00)01195-5

    Article  PubMed  CAS  Google Scholar 

  30. Jackson AL, Linsley PS (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet 20:521–524. doi:10.1016/j.tig.2004.08.006

    Article  PubMed  CAS  Google Scholar 

  31. Schauerte P, Scherlag BJ, Pitha J, Scherlag MA, Reynolds D, Lazzara R et al (2000) Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation 102:2774–2780

    PubMed  CAS  Google Scholar 

  32. Pappone C, Santinelli V, Manguso F, Vicedomini G, Gugliotta F, Augello G et al (2004) Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation 109:327–334. doi:10.1161/01.CIR.0000112641.16340.C7

    Article  PubMed  Google Scholar 

  33. Hashimoto N, Yamashita T, Tsuruzoe N (2006) Tertiapin, a selective IKACh blocker, terminates atrial fibrillation with selective atrial effective refractory period prolongation. Pharmacol Res 54:136–141. doi:10.1016/j.phrs.2006.03.021

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Xiaojun Kang for assistance with the cell culture experiments described in this study. We are also grateful to Mei Xing for help with collecting specimens and Professor Zhipei Zhang and Lu Ding for assistance with molecular biology experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangsun Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Yang, J., Shang, F. et al. Silencing GIRK4 expression in human atrial myocytes by adenovirus-delivered small hairpin RNA. Mol Biol Rep 36, 1345–1352 (2009). https://doi.org/10.1007/s11033-008-9318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9318-0

Keywords

Navigation