Skip to main content
Log in

ACE gene polymorphism and cardiac structure in patients with insulin resistance

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aims: Angiotensin-converting enzyme (ACE) is a key enzyme in the production of angiotensin II, thus may participate in the modulation of cardiac growth. The aim of our study is to analyze the ACE gene I/D polymorphisms in patients with insulin resistance (IR) and to evaluate its relationship to left ventricular mass and functions. Methods: Eighteen subjects (13 female and 5 male, mean age 39.8 ± 14) with IR were enrolled in the present study. Twenty-three healthy people without IR were recruited as the control group. ACE amplification of DNA was performed by polymerase chain reaction methodology. Fasting glucose and insulin, postprandial glucose, homeostasis model assessment (HOMA-IR) and HOMA-beta, lipid profile, anthropometric measurements were assessed. Left ventricular structure and functions were measured by echocardiography. Results: Distribution of I/D polymorphism of the ACE gene in the study group was as follows: genotype II–0%, ID–38.9%, DD–61.1% of patients. Distribution of individual genotypes was similar in patients with and without IR. No significant difference was found between genotype groups in terms of anthropometric measurements and metabolic parameters and blood pressure. Echocardiography showed no significant changes in left ventricular structure and functions in patients with IR. Conclusions: We considered that in patients with IR, there is no relationship between I/D polymorphism of the ACE gene and LVH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rigat B, Hubert C, Alhenc-Gelas F et al (1990) An insertion/deletion polymorphism in the angiotensin I converting gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346

    Article  PubMed  CAS  Google Scholar 

  2. Cambien F, Poirier O, Lecerf L et al (1992) Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359:641–644

    Article  PubMed  CAS  Google Scholar 

  3. Ruiz J, Blanché H, Cohen N et al (1994) Insertion/deletion polymorphism of the angiotensin-converting enzyme gene is strongly associated with coronary heart disease in non-insulin dependent diabetes mellitus. Proc Natl Acad Sci USA 91:3662–3665

    Article  PubMed  CAS  Google Scholar 

  4. Perticone F, Maio R, Di Paola R et al (2007) Role of PC-1 and ACE genes on insulin resistance and cardiac mass in never-treated hypertensive patients. Suggestive evidence for a digenic additive modulation. Nutr Metab Cardiovasc Dis 17(3):181–187

    Article  PubMed  CAS  Google Scholar 

  5. Devereux RB, Roman MJ, Paranicas M et al (2000) Impact of diabetes on cardiac structure and function: the Strong Heart Study. Circulation 101:2271–2276

    PubMed  CAS  Google Scholar 

  6. Galderisi M, Anderson KM, Wilson PW et al (1991) Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 68:85–89

    Article  PubMed  CAS  Google Scholar 

  7. Ilercil A, Devereux RB, Roman MJ et al (2001) Relationship of impaired glucose tolerance to left ventricular structure and function: the Strong Heart Study. Am Heart J 141:992–998

    Article  PubMed  CAS  Google Scholar 

  8. Lee M, Gardin JM, Lynch JC et al (1997) Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: the Cardiovascular Health Study. Am Heart J 133:36–43

    Article  PubMed  CAS  Google Scholar 

  9. Colao A, Baldelli R, Marzullo P et al (2000) Systemic hypertension and impaired glucose tolerance are independently correlated to the severity of the acromegalic cardiomyopathy. J Clin Endocrinol Metab 85:193–199

    Article  PubMed  CAS  Google Scholar 

  10. Shenoy MM, Goldman JM (1987) Hypothyroid cardiomyopathy: echocardiographic documentation of reversibility. Am J Med Sci 294:1–9

    Article  PubMed  CAS  Google Scholar 

  11. Paolisso G, Galderisi M, Tagliamonte MR et al (1997) Myocardial wall thickness and left ventricular geometry in hypertensives: relationship with insulin. Am J Hypertens 10:1250–1256

    Article  PubMed  CAS  Google Scholar 

  12. Verdecchia P, Reboldi G, Schillaci G et al (1999) Circulating insulin and insulin growth factor-1 are independent determinants of left ventricular mass and geometry in essential hypertension. Circulation 100:1802–1807

    PubMed  CAS  Google Scholar 

  13. Galvan AQ, Galetta F, Natali A et al (2000) Insulin resistance and hyperinsulinemia: no independent relation to left ventricular mass in humans. Circulation 102:2233–2238

    PubMed  CAS  Google Scholar 

  14. Uusitupa M, Siitonen O, Pyorala K et al (1987) Relationship of blood pressure and left ventricular mass to serum insulin levels in newly diagnosed non-insulin-dependent (type 2) diabetic patients and in non-diabetic subjects. Diabetes Res 4:19–25

    PubMed  CAS  Google Scholar 

  15. Palmieri V, Bella JN, Arnett DK et al (2001) Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation 103:102–107

    PubMed  CAS  Google Scholar 

  16. Sundstrom J, Lind L, Nystrom N et al (2000) Left ventricular concentric remodeling rather than left ventricular hypertrophy is related to the insulin resistance syndrome in elderly men. Circulation 101:2595–2600

    PubMed  CAS  Google Scholar 

  17. Matthews DR et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  18. Lebovitz HE (2002) Insulin resistance and the insulin resistance syndrome. In: Clinician’s manual on insulin resistance. Science Press, London, pp 1–15

  19. Turgut G, Turgut S, Genç O et al (2004) The angiotensin converting enzyme I/D polymorphism in Turkish athletes and sedentary controls. Acta Med 47:133–136

    CAS  Google Scholar 

  20. Sahn DJ, DeMaria A, Kisslo J, Weyman A (1978) The committee on M-mode standardization of the American Society of Echocardiography: recommendation regarding quantification in M-mode echocardiography; results of a survey of echocardiographic measurement. Circulation 58:1072–1080

    PubMed  CAS  Google Scholar 

  21. European Society of Hypertension-European Society of Cardiology (2003) Guidelines committee. 2003 European society of hypertension-European society of cardiology guidelines for the management of arterial hypertension. J Hypertens 21:1011–1053

    Article  Google Scholar 

  22. Dursunoglu D, Evrengul H, Tanriverdi H et al (2005) Angiotensin-converting enzyme polymorphism in healthy young subjects: relationship to left ventricular mass and functions. Acta Cardiol 60(2):153–158

    Article  PubMed  Google Scholar 

  23. Yang M, Qiu CC, Xu O, Xiang HD (2006) Association of angiotensin converting enzyme gene I/D polymorphism with type 2 diabetes mellitus. Biomed Environ Sci 19(4):323–327

    PubMed  CAS  Google Scholar 

  24. Huang XH, Rantalaiho V, Wirta O et al (1998) Relationship of the angiotensin-converting enzyme gene polymorphism to glucose intolerance, insulin resistance, and hypertension in NIDDM. Hum Genet 102(3):372–378

    Article  PubMed  CAS  Google Scholar 

  25. Viitanen L, Pihlajamaki J, Halonen P et al (2001) Association of angiotensin converting enzyme and plasminogen activator inhibitor-1 promoter gene polymorphisms with features of the insulin resistance syndrome in patients with premature coronary heart disease. Atherosclerosis 157:57–64

    Article  PubMed  CAS  Google Scholar 

  26. Zingone A, Dominijanni A, Mele E et al (1994) Deletion polymorphism in the gene for angiotensin converting enzyme is associated with elevated fasting blood glucose levels. Hum Genet 94:207–209

    Article  PubMed  CAS  Google Scholar 

  27. Panahloo A, Andres C, Mohamed-Ali V et al (1995) The insertion allele of the ACE gene I/D polymorphism. A candidate gene for insulin resistance? Circulation 92(12):3390–3393

    Google Scholar 

  28. Katsuya T, Horiuchi M, Chen YD et al (1995) Relations between deletion polymorphism of the angiotensin-converting enzyme gene and insulin resistance, glucose intolerance, hyperinsulinemia, and dyslipidemia. Arterioscler Thromb Vasc Biol 15:779–782

    PubMed  CAS  Google Scholar 

  29. Thamer C, Koch M, Haap M et al (2002) Association of the ACE gene I/D polymorphism with insulin sensitivity depends on the presence of additional macroangiopathic risk factors. Atherosclerosis 160(1):257–258

    Article  PubMed  CAS  Google Scholar 

  30. Raynolds MV, Bristow MR, Bush EW et al (1993) Angiotensin-converting enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy. Lancet 342:1073–1075

    Article  PubMed  CAS  Google Scholar 

  31. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease: the Framingham study. JAMA 241:2035–2038

    Article  PubMed  CAS  Google Scholar 

  32. Moleda P, Majkowska L, Kaliszczak R et al (2006) Insertion/deletion polymorphism of angiotensin I converting enzyme gene and left ventricular hypertrophy in patients with type 2 diabetes mellitus. Kardiol Pol 64(9):959–965

    PubMed  Google Scholar 

  33. Young ME, McNulty P, Taegtmeyer H (2002) Adaptation and maladaptation of the heart in diabetes: Part II: potential mechanisms. Circulation 105:1861–1870

    Article  PubMed  CAS  Google Scholar 

  34. Rutter MK, Parise H, Benjamin EJ et al (2003) Impact of glucose intolerance and insulin resistance on cardiac structure and function: Sex-related differences in the Framingham Heart Study. Circulation 107(3):448–454

    Article  PubMed  CAS  Google Scholar 

  35. Di Pasquale P, Cannizzaro S, Paterna S (2004) Does angiotensin-converting enzyme gene polymorphism affect blood pressure? Findings after 6 years of follow-up in healthy subjects. Eur J Heart Fail 6(1):11–16

    Article  PubMed  Google Scholar 

  36. Perticone F, Ceravolo R, Iacopino S (2001) Iacopino et al Relationship between angiotensin-converting enzyme gene polymorphism and insulin resistance in never-treated hypertensive patients. J Clin Endocrinol Metab 86:172–178

    Article  PubMed  CAS  Google Scholar 

  37. Ito H, Hiroe M, Hirata Y et al (1993) Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation 87:1715–1721

    PubMed  CAS  Google Scholar 

  38. Steven J, Whitsert JA (1979) Insulin binding to neonatal human, guinea pig and rat myocardial membranes. Pediatr Res 13:482

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulya Akin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akin, F., Turgut, S., Dursunoglu, D. et al. ACE gene polymorphism and cardiac structure in patients with insulin resistance . Mol Biol Rep 36, 623–629 (2009). https://doi.org/10.1007/s11033-008-9222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9222-7

Keywords

Navigation