Skip to main content
Log in

Construction of cytoplasmic molecular markers distinguishing Danio rerio from Gobiocypris rarus at high identity domains based on MP-PCR strategy and Sybr Green I detection

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To distinguish the cytoplasm of Danio rerio from that of Gobiocypris rarus, we cloned G. rarus COXI and constructed cytoplasmic molecular markers at the high identity domains of COXI by mutated primer PCR (MP-PCR for short). Then Sybr Green I was used to detect the single amplicon. As a result, we succeeded in getting the cytoplasmic molecular markers, G.M COXI and Z.M COXI, by MP-PCR strategy. They were used to detect the sperm-derived mtDNA in the sexual hybrid embryos (D. rerio ♀ × G. rarus ♂) before the sphere stage. In the present study, all results demonstrate that MP-PCR approach and Sybr Green I detection are feasible to construct the molecular markers to identify genes that shared high identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnes W (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci USA 91:2216–2220

    Article  PubMed  CAS  Google Scholar 

  • Don R, Cox P, Wainwright B, Baker K, Mattic J (1991) Touch-down PCR to circumvent spurious priming during gene amplication. Nucl Acids Res 19:4008

    Article  PubMed  CAS  Google Scholar 

  • Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet 3:717–724

    Article  PubMed  CAS  Google Scholar 

  • Han ZM, Chen DY, Li JS, Sun QY, Wan QH, Kou ZH, Rao G, Lei L, Liu ZH, Fang SG. (2003) Mitochondrial DNA heteroplasmy in calves cloned by using adult somatic cell. Mol Reprod Dev 67:207–214

    Article  Google Scholar 

  • Hiendleder S, Zakhartchenko V, Wolf E (2005) Mitochondria and the success of somatic cell nuclear transfer cloning: from nuclear–mitochondrial interactions to mitochondrial complementation and mitochondrial DNA recombination. Reprod Fertil Dev 17:69–83

    Article  PubMed  CAS  Google Scholar 

  • Innis M, Gelfand D, Sninsky J, White T (1990). PCR protocols: a guide to methods and applications. Academic Press, New York, pp 348–355

    Google Scholar 

  • Inoue K, Ogonuki N, Yamamoto Y, Takano K, Miki H, Mochida K, Ogura A (2004) Tissue-specific distribution of donor mitochondrial DNA in cloned mice produced by somatic cell nuclear transfer. Genesis 39(2):79–83

    Article  PubMed  CAS  Google Scholar 

  • Jang I, Moon JH, Yoon JB, Yoo JH, Yang TJ, Kim YJ, Park HG (2004) Application of RAPD and SCAR markers for purity testing of F1 Hybrid seed in chili pepper (Capsicum annuum). Mol Cells 18(3):295–299

    PubMed  CAS  Google Scholar 

  • Key B, Devine CA (2003) Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci 25:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    PubMed  CAS  Google Scholar 

  • Liu SZ, Zhou ZM, Chen T, Zhang YL, Wen DC, Kou ZH, Li ZD, Sun Q Y, Chen DY (2004) Blastocysts produced by nuclear transfer between chicken blastodermal cells and rabbit oocytes. Mol Reprod Dev 69:296–302

    Article  PubMed  CAS  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273

    PubMed  CAS  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic application of an inverse polymerase chain reaction. Genetics 120:621–623

    PubMed  CAS  Google Scholar 

  • Qun-Fang Z, Gui-Bin J, Ji-Yan L (2002) Effects of sublethal levels of tributyltin chloride in a new toxicity test organism: the Chinese rare minnow (Gobiocypris rarus). Arch Environ Contam Toxicol 42:332–337

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel, David W, (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Steinborn R (2002) Coexistence of Bos taurus and B. indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics 162:823–829

    PubMed  CAS  Google Scholar 

  • Sun YH, ChenS P, WangY P, Hu W, Zhu ZY (2005) Cytoplasmic impact on cross-genus cloned fish derived from transgenic common carp (Cyprinus carpio) nuclei and goldfish (Carassius auratus) enucleated eggs. Biol Reprod 72:510–515

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F (1997) The Clustal-X windows interface: flexible strategies for multiple sequences alignment aided by quality analusis tools. Nucleic Acids Res 125:4876–4882

    Article  Google Scholar 

  • Tuma RS, Beaudet MP, Jin X, Jones LJ, Cheung CY, Yue S, Singer VL (1999) Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300 nm ultraviolet transilluminators. Anal Biochem 268:278–288

    Article  PubMed  CAS  Google Scholar 

  • Wang J (1995) Acute effects of high concentration of dissolved free carbon dioxide and low dissolved oxygen on rare minnow. Acta Hydrobiol Sin 19:84–88

    Google Scholar 

  • Wang J, Cao W (1997) Gobiocypris rarus and fishes as laboratory animals. Trans Chin Ichthyol Soc 6:144–152

    Google Scholar 

  • Wang T, Chen H, Liu P, Liu H, Guo W, Yi Y (1994a) Observations on the ultra-thin sections of the main organs and tissues of hemorrhagic Gobiocypris rarus artificially infected by grass carp hemorrhagic virus (GCHV). Acta Hydrobiol Sin 17:343–346

    Google Scholar 

  • Wang T, Liu P, Chen H, Liu H, Yi Y, Guo W (1994b) Preliminary study on the susceptibility of Gobiocypris rarus to hemorrhagic virus of grass carp (GCHV). Acta Hydrobiol Sin 18:144–149

    Google Scholar 

  • Zhu ZY, Sun YH (2000) Embryonic and genetic manipulation in fish. Cell Res 10:17–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Fundamental Research of China (Grant Nos. 2004CB117402 and 2004CB117406) and the National Natural Science Foundation of China (Grant No. 90208024). In addition, the authors are grateful to Ms. Ming Li for supplying experimental materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Sheng Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, D.S., Sun, Y.H. & Zhu, Z.Y. Construction of cytoplasmic molecular markers distinguishing Danio rerio from Gobiocypris rarus at high identity domains based on MP-PCR strategy and Sybr Green I detection. Mol Biol Rep 35, 45–50 (2008). https://doi.org/10.1007/s11033-006-9050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-006-9050-6

Keywords

Navigation