Skip to main content

Advertisement

Log in

Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Three members of Brassica napus TRANSPARENT TESTA 2 (BnTT2) gene family encoding potential R2R3-MYB regulatory proteins of proanthocyanidin biosynthesis were isolated. BnTT2-1, BnTT2-2, and BnTT2-3 are 1102 bp with two introns, and have a 938-bp full-length cDNA with a 260 amino acid open reading frame. They share 98.2–99.3% nucleotide and 96.5–98.5% amino acid identities to each other, and are orthologous to Arabidopsis thaliana TT2 (AtTT2) with 74.1–74.8% nucleotide and 71.1–71.8% amino acid identities. An mRNA type of BnTT2-2 was found to contain unspliced intron 2 and encode a premature protein. They all have an alternative polyadenylation site. BnTT2-1 and BnTT2-3 also have an alternative transcription initiation site. Aligned with AtTT2, their 5′ untranslated regions (UTRs) are astonishingly conserved, and two conserved regions were also found in their 3′ UTRs. Oligonucleotide deletion leads to double-start codons of them. Resembling AtTT2, BnTT2 proteins are nuclear-located R2R3-MYB proteins containing predicted DNA-binding sites, bHLH interaction residues, and transcription activation domains. Southern blot indicated that there might be three BnTT2 members in B. napus, lower than triplication-based prediction. Semiquantitative reverse transcription–polymerase chain reaction (RT–PCR) revealed that the expression of BnTT2-2 is mostly like AtTT2 with intensive expression in young seeds, but it is also expressed in root in which AtTT2 has no expression. BnTT2-1 shows lower tissue specificity and transcription levels, whereas BnTT2-3 is the lowest. Comparative cloning and RT–PCR indicated that seed color near-isogenic lines L1 and L2 have equivalent BnTT2 genes, and the yellow seed color in L2 might be caused by locus/loci other than BnTT2. Our results lay the basis for further investigating the regulatory mechanism of BnTT2 genes in flavonoid pathway and for transgenic creation of novel yellow-seeded B. napus stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aa:

amino acid

AtTT2/TT2 :

Arabidopsis thaliana TRANSPARENT TESTA 2

BnTT2 :

Brassica napus TRANSPARENT TESTA 2

bp:

base pair

cDNA:

complementary DNA

DAF:

day after flowering

DIG:

digoxygenin

pI:

isoelectric point

Mw:

molecular weight

NCBI:

National Center of Biotechnology Institute

ORF:

open reading frame

PA:

proanthocyanidin

PCR:

polymerase chain reaction

RACE:

rapid amplification of cDNA ends

RT:

reverse transcription

UTR:

untranslated region

References

  1. Abraham V, Bhatia CR (1986) Development of strains with yellow seedcoat in Indian mustard (Brassica juncea Czern. & Coss.). Plant Breed 97:86–88

    Article  Google Scholar 

  2. Heneen WK, Brismar K (2001) Maternal and embryonal control of seed colour by different Brassica alboglabra chromosomes. Plant Breed 120:325–329

    Article  Google Scholar 

  3. Bartel B, Matsuda SPT (2003) Seeing red. Science 299:352–353

    Article  PubMed  CAS  Google Scholar 

  4. Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531

    Article  PubMed  CAS  Google Scholar 

  5. Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koorneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  6. Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    Article  PubMed  CAS  Google Scholar 

  7. Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980

    Article  PubMed  CAS  Google Scholar 

  8. Debeaujon I, Peeters AJ, Leon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    Article  PubMed  CAS  Google Scholar 

  9. Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    Article  PubMed  CAS  Google Scholar 

  10. Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479

    Article  PubMed  CAS  Google Scholar 

  11. Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    Article  PubMed  CAS  Google Scholar 

  12. Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349

    Article  PubMed  CAS  Google Scholar 

  13. Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  PubMed  CAS  Google Scholar 

  14. Sagasser M, Lu G-H, Hahlbrock K, Weisshaar B (2002) A. thaliana TRANSPARENT TESTA1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev 16:138–149

    Article  PubMed  CAS  Google Scholar 

  15. Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  PubMed  CAS  Google Scholar 

  16. Jaakola L, Pirttilä AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  PubMed  CAS  Google Scholar 

  17. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Reptr 1:19–21

    Article  CAS  Google Scholar 

  18. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  19. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  20. Gilmartin GM (2005) Eukaryotic mRNA 3' processing: a common means to different ends. Genes Dev 19:2517–2521

    Article  PubMed  CAS  Google Scholar 

  21. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  22. Hofmann K, Stoffel W (1993) TMbase - A database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374:166

    Google Scholar 

  23. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331

    Article  PubMed  CAS  Google Scholar 

  24. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  25. Heine GF, Hernandez MJ, Grotewold E (2004) Two cysteines in plant R2R3 MYB domains participate in REDOX-dependent DNA binding. J Biol Chem 279:37878–37885

    Article  PubMed  CAS  Google Scholar 

  26. Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL (2000) Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc Natl Acad Sci USA 97:13579–13584

    Article  PubMed  CAS  Google Scholar 

  27. Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34

    Article  PubMed  CAS  Google Scholar 

  28. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    PubMed  CAS  Google Scholar 

  29. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  30. Lukens L, Quijada P, Udall J, Pires JC, Schranz ME, Osborn TC (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linnean Soc 82:665–674

    Article  Google Scholar 

  31. Cavell A, Lydiate D, Parkin I, Dean C, Trick M (1998) Collinearity between a 30-centimorgan segment in Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    Article  PubMed  CAS  Google Scholar 

  32. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem 39:253–262

    Article  CAS  Google Scholar 

  34. Parkin IAP, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46:291–303

    Article  PubMed  CAS  Google Scholar 

  35. Lim YP, Plaha P, Choi SR, Uhm T, Hong CP, Bang JW, Hur YK (2006) Toward unraveling the structure of Brassica rapa genome. Physiol Plant 126:585–591

    Article  CAS  Google Scholar 

  36. Sonnhammer EL, Koonin EV (2002) Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet 18:619–620

    Article  PubMed  CAS  Google Scholar 

  37. Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34:D363–D368

    Article  PubMed  CAS  Google Scholar 

  38. Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30:13–19

    Article  PubMed  CAS  Google Scholar 

  39. Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants: Functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  PubMed  CAS  Google Scholar 

  40. Locatelli F, Bracale M, Magaraggia F, Faoro F, Manzocchi LA, Coraggio I (2000) The product of the rice myb7 unspliced mRNA dimerizes with the maize leucine zipper Opaque2 and stimulates its activity in a transient expression assay. J Biol Chem 275:17619–17625

    Article  PubMed  CAS  Google Scholar 

  41. Gautvik KM, Alestrom P, Oyen TB, Gabrielsen OS (2005) Production of human parathyroid hormone from microorganisms. US Patent 6,962,796

  42. Sharma SB, Dixon RA (2005) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J 44:62–75

    Article  PubMed  CAS  Google Scholar 

  43. Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276

    Article  PubMed  CAS  Google Scholar 

  44. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  45. Lee MM, Schiefelbein J (2001) Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development 128:1539–1546

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Major Program of Chongqing Municipal Natural Science Foundation (No. 8446) and the Major Program of National Natural Science Foundation (No. 30330400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Rong Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, YL., Li, JN., Lu, J. et al. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep 34, 105–120 (2007). https://doi.org/10.1007/s11033-006-9024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-006-9024-8

Keywords

Navigation