Skip to main content
Log in

Identification of QTL and genes for pod number in soybean by linkage analysis and genome-wide association studies

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Pod number is an important component of yield in soybean (Glycine max (L.) Merr.), and pods are unevenly distributed in the upper, middle and lower parts of the plant. Here, linkage analysis combined with genome-wide association study (GWAS) was used to identify 20 pod number-related traits in four-way recombinant inbred lines (FW-RILs) derived from crosses between the four soybean varieties (Kenfeng 14 × Kenfeng 15) × (Heinong 48 × Kenfeng 19). The results show that pod number-related traits are highly influenced by genetic factors, while the environment plays only a minor role. A total of 602 QTLs were identified, of which 52 were detected in multiple environments (over two environments). In addition, GWAS detected 26 common QTNs (identified by multiple methods or environments) in the QTL intervals. Based on gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, 11 potential candidate genes were identified that likely involved the growth and development of soybean pods. These findings will help elucidate the genetic basis of pod number traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abid G, Silué S, Muhovski Y, Jacquemin JM, Toussaint A, Baudoin JP (2009) A spatiotemporal analysis of sucrose synthase during seed development in wild-type and EMS mutant embryos of common bean (Phaseolus vulgaris L.) using in situ hybridization. New Biotechnol 25:361–362

    Google Scholar 

  • Al Mukhtar FA, Coyne DP (1981) Inheritance and association of flower, ovule, seed, pod, and maturity characters in dry edible beans (Phaseolus vulgaris L.). J AMER SOC HORT SCI 106:713–719

    Google Scholar 

  • Ariyoshi Y, Itoyama H, Nakagawa AC, Ario N, Kondo Y, Tomita Y, Tanaka S, Nakashima M, Tomioka K, Iwaya-Inoue M (2016) Regulation of brassinosteroid on pod growth through cell hypertrophy in soybean (Glycine max (L.) Merr.). Plant Growth Regul 80:391–395

    CAS  Google Scholar 

  • Bandillo N, Raghavan C, Muyco PA, Sevilla MA, Lobina IT, Dillaermita CJ, Tung C, Mccouch SR, Thomson MJ, Mauleon R, Singh RK, Gregorio GB, Redona ED, Leung H (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11–11

    PubMed  PubMed Central  Google Scholar 

  • Beckendorf EA, Catangui MA, Riedell WE (2008) Soybean aphid feeding injury and soybean yield, yield components, and seed composition. Agron J 100:237–246

    Google Scholar 

  • Belamkar V, Farmer AD, Weeks NT, Kalberer SR, Blackmon WJ, Cannon SBJSr (2016) Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume. Sci Rep 6:34908

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Butron A, Santiago R, Cao A, Samayoa LF, Malvar RA (2018) QTLs for resistance to Fusarium ear rot in a multi-parent advanced generation inter-cross (MAGIC) maize population. Plant Dis 103:897–904. https://doi.org/10.1094/PDIS-09-18-1669-RE

    Article  Google Scholar 

  • Cai Z, Cheng Y, Ma Z, Liu X, Ma Q, Xia Q, Zhang G, Mu Y, Nian H (2018) Fine-mapping of QTLs for individual and total isoflavone content in soybean (Glycine max L.) using a high-density genetic map. Theor Appl Genet 131:555–568

    CAS  PubMed  Google Scholar 

  • Chen Q, Zhang Z, Liu C, Xin D, Qiu H, Shan D, Shan C, Hu G (2007) QTL analysis of major agronomic traits in soybean. Sci Agric Sin 6:399–405

    CAS  Google Scholar 

  • Dieck CB (2012) PIP5K: role in plant nuclear function and characterization of MORN domain structure. North Carolina State University Ph.D. dissertation

  • Doyle JJ, Doyle JL, Brown AH (1990) Analysis of a polyploid complex in Glycine with chloroplast and nuclear DNA. Aust Syst Bot 3:125–136

    Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

  • Ellis C, Turner JG (2002) A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215:549–556

    CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620

  • Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M (2017) Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 18:161

    PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    CAS  PubMed  Google Scholar 

  • Frébortová J, Greplová M, Seidl MF, Heyl A, Frébort I (2015) Biochemical characterization of putative adenylate dimethylallyltransferase and cytokinin dehydrogenase from Nostoc sp. PCC 7120. PLoS one. https://doi.org/10.1371/journal.pone.0138468

  • Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet 111:851–861

    CAS  PubMed  Google Scholar 

  • Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z, Powers SJ, Gong F, Phillips AL, Hedden P, Sun T (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han Z, Hu G, Liu H, Liang F, Yang L, Zhao H, Zhang Q, Li Z, Zhang Q, Xing Y (2020) Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theor Appl Genet 133:59–71

    PubMed  Google Scholar 

  • Hirano K, Ueguchitanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13:192–199

    CAS  PubMed  Google Scholar 

  • Hu G, Zhang D, Pan H, Li B, Wu J, Zhou X, Zhang Q, Zhou L, Yao G, Li J (2011) Fine mapping of the awn gene on chromosome 4 in rice by association and linkage analyses. Chin Sci Bull 56:835–839

    CAS  Google Scholar 

  • Huang BE, George A, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    CAS  PubMed  Google Scholar 

  • Huynh B, Ehlers JD, Huang BE, Munozamatriain M, Lonardi S, Santos JR, Ndeve A, Batieno BJ, Boukar O, Cisse N, Drabo I, Fatokun C, Kusi F, Agyare RY, Guo Y, Herniter IA, Lo S, Wanamaker S, Xu S, Close TJ, Roberts PA (2018) A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J 93:1129–1142

    CAS  PubMed  Google Scholar 

  • Hwang E, Song Q, Jia G, Specht JE, Hyten DL, Costa JM, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1–12

    PubMed  PubMed Central  Google Scholar 

  • Jiménez-Galindo JC, Malvar RA, Butrón A, Santiago R, Samayoa LF, Caicedo M, Ordás B (2019) Mapping of resistance to corn borers in a MAGIC population of maize. BMC Plant Biol 19:1–17

    Google Scholar 

  • Karikari B, Chen S, Xiao Y, Chang F, Zhou Y, Kong J, Bhat JA, Zhao T (2019) Utilization of interspecific high-density genetic map of RIL population for the QTL detection and candidate gene mining for 100-seed weight in soybean. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01001

  • Kuroda Y, Kaga A, Tomooka N, Yano H, Takada Y, Kato S, Vaughan DA (2013) QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Ecol Evol 3:2150–2168

    PubMed  PubMed Central  Google Scholar 

  • Li D, Sun M, Han Y, Teng W, Li W (2010) Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica 172:49–57

    Google Scholar 

  • Liu W, Kim MY, Van K, Lee Y-H, Li H, Liu X, Lee S (2011) QTL identification of yield-related traits and their association with flowering and maturity in soybean. J Crop Sci Biotechnol 14:65–70

    Google Scholar 

  • Liu S, Xue H, Zhang K, Wang P, Su D, Li W, Xu S, Zhang J, Qi Z, Fang Y, Li X, Wang Y, Tian X, Song J, Wang J, Yang C, Jiang S, Li WX, Ning H (2019) Mapping QTL affecting the vertical distribution and seed set of soybean [Glycine max (L.) Merr.] pods. Crop J 7:694–706

    Google Scholar 

  • Ning H, Bai X, Li W, Xue H, Zhuang X, W-X LI, Liu C (2016) Mapping QTL protein and oil contents using population from four-way recombinant inbred lines for soybean (Glycine max L. Merr.). Acta Agron Sin 42:1620–1628

    Google Scholar 

  • Ning H, Yuan J, Dong Q, Li W, Xue H, Wang Y, Tian Y, Li W (2018) Identification of QTLs related to the vertical distribution and seed-set of pod number in soybean [Glycine max (L.) Merri]. PLoS One. https://doi.org/10.1371/journal.pone.0195830

  • Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F (2018) Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol J 16:1939–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    CAS  PubMed  Google Scholar 

  • Schou JB, Jeffers DL, Streeter JG (1978) Effects of reflectors, black boards, or shades applied at different stages of plant development on yield of soybeans1. Crop Sci 18:29–34

    Google Scholar 

  • Tamba CL, Ni Y, Zhang Y (2017) Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol 13:e1005357. https://doi.org/10.1371/journal.pcbi.1005357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, Mc DV, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thyssen GN, Jenkins JN, Mccarty JC, Zeng L, Campbell BT, Delhom CD, Islam MS, Li P, Jones DC, Condon B, Fang DD (2019) Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.). Theor Appl Genet 132:989–999

    CAS  PubMed  Google Scholar 

  • Tischner T, Allphin L, Chase K, Orf JH, Lark KG (2003) Genetics of seed abortion and reproductive traits in soybean. Crop Sci 43:464–473

    CAS  Google Scholar 

  • Vieira AJ, Oliveira DA, Soares TC, Schuster I, Piovesan ND, Martínez CA, Barros EG, Moreira MA (2006) Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Brazilian J Plant Physiol 18:281–290

    Google Scholar 

  • Wang X, Zhang X, Zhou R, Sha A, Wu X, Cai S, Qiu D, Zhou X (2007) QTL analysis of seed and pod traits in soybean RIL population. Acta Agron Sin

  • Wang S, Feng J, Ren W, Huang B, Zhou L, Wen Y, Zhang J, Dunwell JM, Xu S, Zhang Y (2016) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 6. https://doi.org/10.1038/srep19444

  • Wang L, Cheng Y, Ma Q, Mu Y, Huang Z, Xia Q, Zhang G, Nian H (2019) QTL fine-mapping of soybean (Glycine max L.) leaf type associated traits in two RILs populations. BMC Genomics 20:1–15

    Google Scholar 

  • Wen Y, Zhang H, Ni Y, Huang B, Zhang J, Feng J, Wang S, Dunwell JM, Zhang Y, Wu R (2017) Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform 19:700–712

    PubMed Central  Google Scholar 

  • Whitley P, Hinz S, Doughty J (2009) Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. Plant Physiol 151:1812–1822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie D, Feys BF, James S, Nietorostro M, Turner J (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    CAS  PubMed  Google Scholar 

  • Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7:1555–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Xin D, Liu C, Jiang H, Han X, Sun Y, Qi Z, Hu G, Chen Q (2013) Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Mol Gen Genomics 288:651–667

    CAS  Google Scholar 

  • Zhang D, Cheng H, Wang H, Zhang H, Liu C, Yu D (2010) Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L.). J Genet Genomics 37:545–556

    CAS  PubMed  Google Scholar 

  • Zhang J, Feng J, Ni YL, Wen Y, Niu Y, Tamba CL, Yue C, Song Q, Zhang Y (2017) pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity 118:517–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Liu S, Li W, Liu S, Li X, Fang Y, Zhang J, Wang Y, Xu S, Zhang J, Song J, Qi Z, Tian X, Tian Z, Li WX, Ning H (2018) Identification of QTNs controlling seed protein content in soybean using multi-locus genome-wide association studies. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01690

  • Zhao X, Luo L, Cao Y, Liu Y, Li Y, Wu W, Lan Y, Jiang Y, Gao S, Zhang Z (2018) Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genomics 19:91. https://doi.org/10.1186/s12864-017-4395-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Wei Q, Gao F (2006) The effect of cytokinins on fruit and seed development. Plant Physiol Commun 42:549

    CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support for this study provided by grants from the National Key Research and Development Program of China (2017YFD0101303-6) to W-X.L.

Author information

Authors and Affiliations

Authors

Contributions

W-XL and HN conceived and designed the experiments. XS, JW, CY, SJ, MS, XL ZQ, YW, XT, and YF performed the field experiments. SL and ZT performed the genome sequencing. JS, KZ, and HN analyzed and interpreted the results. JS and HN drafted the manuscript and all the authors contributed to the manuscript revision.

Corresponding authors

Correspondence to Wen-Xia Li or Hailong Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

Summary of planting conditions of 5 environments (XLSX 9 kb)

Table S2

Phenotypic data of pod number traits in 6 extreme lines (XLSX 8 kb)

Table S3

Primer sequences used in this study (XLSX 9 kb)

Table S4

Statistical analysis of pod number-related traits for FW-RILs grown in different environments (XLSX 18 kb)

Table S5

Joint ANOVA of pod numbers related traits of FW-RILs in multiple environments and heritability (XLSX 16 kb)

Table S6

Identification of QTL for soybean pod number at Multi-environment (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Sun, X., Zhang, K. et al. Identification of QTL and genes for pod number in soybean by linkage analysis and genome-wide association studies. Mol Breeding 40, 60 (2020). https://doi.org/10.1007/s11032-020-01140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-020-01140-w

Keywords

Navigation