Skip to main content
Log in

QTL mapping for leaf morphology traits in a large maize-teosinte population

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

From its wild progenitor teosinte (Zea mays ssp. parviglumis), maize has experienced a dramatic morphological transformation. Although several critical genes controlling the changes in overall plant architecture during domestication have been identified, the genetic basis that controls the changes in leaf morphology, an important component of plant architecture, remains poorly understood. Here, using a large population of 866 maize-teosinte BC2S3 recombinant inbred lines genotyped with 19,838 SNP markers, we performed high-resolution quantitative trait locus (QTL) mapping for three leaf morphological traits, including leaf length, leaf width, and sheath length. We demonstrate that the three leaf traits were associated with distinct genetic architecture features and under relatively independent genetic control. This genetic independence was further validated by the analysis of near-isogenic lines for target QTLs. QTL characterization revealed that the three leaf traits might have experienced directional selection for increased leaf size since domestication. We found that known leaf development genes identified by mutagenesis were significantly enriched in the support intervals of leaf trait QTLs, potentially indicating their important roles in regulating natural variation in leaf traits. Our findings provide important insights into the genetic basis that controls maize leaf evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrama HAS, Zakaria AG, Said FB, Tuinstra M (1999) Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed 5:187–195

    Article  Google Scholar 

  • Bian Y, Sun D, Gu X, Wang Y, Yin Z, Deng D, Wang Y, Wu F, Li G (2014) Identification of QTL for stalk sugar-related traits in a population of recombinant inbred lines of maize. Euphytica 198:79–89

    Article  CAS  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  Google Scholar 

  • Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7:e1002383

    Article  CAS  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  Google Scholar 

  • Candela H, Johnston R, Gerhold A, Foster T, Hake S (2008) The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. Plant Cell 20:2073–2087

    Article  CAS  Google Scholar 

  • Cho KH, Jun SE, Lee YK, Jeong SJ, Kim GT (2007) Developmental processes of leaf morphogenesis in Arabidopsis. J Plant Biol 50:282–290

    Article  CAS  Google Scholar 

  • Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184:799–812

    Article  CAS  Google Scholar 

  • Cui T, He K, Chang L, Zhang X, Xue J, Liu J (2017) QTL mapping for leaf area in maize (Zea mays L.) under multi-environments. J Integr Agric 16:800–808

    Article  Google Scholar 

  • Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, Inzé D, Rodriguez RE, Palatnik JF (2014) Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J 79:413–426

    Article  CAS  Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    Article  CAS  Google Scholar 

  • Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A (1993) Inheritance of morphological differences between maize and teosinte-comparison of results for two F2 populations. Genetics 134:559–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  Google Scholar 

  • Douglas RN, Wiley D, Sarkar A, Springer N, Timmermans MCP, Scanlon MJ (2010) ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22:1441–1451

    Article  CAS  Google Scholar 

  • Du F, Guan CM, Jiao YL (2018) Molecular mechanisms of leaf morphogenesis. Mol Plant 11:1117–1134

    Article  CAS  Google Scholar 

  • Evans MMS (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62

    Article  CAS  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  CAS  Google Scholar 

  • Fowler JE, Freeling M (1996) Genetic analysis of mutations that alter cell fates in maize leaves: dominant liguleless mutations. Dev Genet 18:198–222

    Article  CAS  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Huang C, Chen Q, Xu G, Xu D, Tian J, Tian F (2016) Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. J Integr Plant Biol 58:81–90

    Article  CAS  Google Scholar 

  • Hung H, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 109:E1913–E1921

    Article  CAS  Google Scholar 

  • Hunter CT, Kirienko DH, Sylvester AW, Peter GF, McCarty DR, Koch KE (2012) Cellulose synthase-like D1 is integral to normal cell division, expansion, and leaf development in maize. Plant Physiol 158:708–724

    Article  CAS  Google Scholar 

  • Husbands AY, Chitwood DH, Plavskin Y, Timmermans MCP (2009) Signals and prepatterns: new insights into organ polarity in plants. Genes Dev 23:1986–1997

    Article  CAS  Google Scholar 

  • Jiang F, Guo M, Yang F, Duncan K, Jackson D, Rafalski A, Wang S, Li B (2012) Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One 7:e37040

    Article  CAS  Google Scholar 

  • Kim GT, Cho KH (2006) Recent advances in the genetic regulation of the shape of simple leaves. Physiol Plant 126:494–502

    CAS  Google Scholar 

  • Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12:2381–2391

    Article  CAS  Google Scholar 

  • Kim GT, Tsukaya H, Saito Y, Uchimiya H (1999) Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc Natl Acad Sci U S A 96:9433–9437

    Article  CAS  Google Scholar 

  • Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36:94–104

    Article  CAS  Google Scholar 

  • Ku L, Zhang J, Zhang JC, Guo S, Liu H, Zhao R, Yan Q, Chen Y (2012a) Genetic dissection of leaf area by jointing two F2:3 populations in maize (Zea Mays L.). Plant Breed 131:591–599

    Article  CAS  Google Scholar 

  • Ku LX, Zhang J, Guo SL, Liu HY, Zhao RF, Chen YH (2012b) Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). J Exp Bot 63:261–274

    Article  CAS  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    Article  CAS  Google Scholar 

  • Li Y, Dong Y, Niu S, Cui D, Wang Y, Liu Y, Wei M, Li X (2008) Identification of agronomically favorable quantitative trait loci alleles from a dent corn inbred Dan232 using advanced backcross QTL analysis and comparison with the F2:3 population in popcorn. Mol Breed 21:1–14

    Article  CAS  Google Scholar 

  • Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, Wang C, Liang Y, Wu L, Huang C (2016) The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol 210:256–268

    Article  CAS  Google Scholar 

  • Li W, Yang Z, Yao J, Li J, Song W, Yang X (2018) Cellulose synthase-like D1 controls organ size in maize. BMC Plant Biol 18:239

    Article  CAS  Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136:223–236

    Article  CAS  Google Scholar 

  • Liu J, Chu Q, Cai H, Mi G, Chen F (2010) SSR linkage map construction and QTL mapping for leaf area in maize. Hereditas 32:625–631

    Article  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084

    Article  CAS  Google Scholar 

  • Milla R, Matesanz S (2017) Growing larger with domestication: a matter of physiology, morphology or allocation? Plant Biol 19:475–483

    Article  CAS  Google Scholar 

  • Milla R, Morente-Lopez J, Alonso-Rodrigo J, Martín-Robles N, Chapin FS III (2014) Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proc R Soc Lond B Biol Sci 281:20141429

    Article  Google Scholar 

  • Moon J, Hake S (2011) How a leaf gets its shape. Curr Opin Plant Biol 14:24–30

    Article  CAS  Google Scholar 

  • Moon J, Candela H, Hake S (2013) The liguleless narrow mutation affects proximal-distal signaling and leaf growth. Development 140:405–412

    Article  CAS  Google Scholar 

  • Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M (1997) liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev 11:616–628

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Nelissen H, Eeckhout D, Demuynck K, Persiau G, Walton A, van Bel M, Vervoort M, Candaele J, De Block J, Aesaert S, Van Lijsebettens M, Goormachtig S, Vandepoele K, Van Leene J, Muszynski M, Gevaert K, Inze D, De Jaeger G (2015) Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant Cell 27:1605–1619

    Article  CAS  Google Scholar 

  • Nelson JM, Lane B, Freeling M (2002) Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf’s dorsoventral axis. Development 129:4581–4589

    CAS  PubMed  Google Scholar 

  • Scanlon MJ (2000) Narrow sheath1 functions from two meristematic foci during founder-cell recruitment in maize leaf development. Development 127:4573–4585

    CAS  PubMed  Google Scholar 

  • Scanlon MJ, Schneeberger RG, Freeling M (1996) The maiscze mutant narrow sheath fails to establish leaf margin identity in a merostematic domain. Development 122:1683–1691

    CAS  PubMed  Google Scholar 

  • Schneeberger R, Tsiantis M, Freeling M, Langdale JA (1998) The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125:2857–2865

    CAS  PubMed  Google Scholar 

  • Shannon L (2012) The genetic architecture of maize domestication and range expansion. PhD thesis, The University of Wisconsin-Madison, Madison, WI, USA

  • Smith JSC, Lester RN (1980) Biochemical systematics and evolution of Zea, Tripsacum and related genera. Econ Bot 34:201–218

    Article  Google Scholar 

  • Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homebox gene, KNOTTED1, causes its ectopic expression in leaf cells with altered fates. Development 116:21–30

    CAS  PubMed  Google Scholar 

  • Strable J, Wallace JG, Unger-Wallace E, Briggs S, Bradbury PJ, Buckler ES, Vollbrecht E (2017) Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell 29:1622–1641

    Article  CAS  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–U1164

    Article  CAS  Google Scholar 

  • Tian F, Stevens NM, Buckler ES (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci U S A 106:9979–9986

    Article  CAS  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  Google Scholar 

  • Timmermans MCP, Schultes NP, Jankovsky JP, Nelson T (1998) Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development 125:2813–2823

    CAS  PubMed  Google Scholar 

  • Timmermans MCP, Hudson A, Becraft PW, Nelson T (1999) ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284:151–153

    Article  CAS  Google Scholar 

  • Tsuge T, Tsukaya H, Uchimiya H (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L) Heynh. Development 122:1589–1600

    CAS  PubMed  Google Scholar 

  • Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547–555

    Article  Google Scholar 

  • Vico G, Manzoni S, Murphy K, Weih M (2016) Trade-offs between seed output and life span – a quantitative comparison of traits between annual and perennial congeneric species. New Phytol 209:104–114

    Article  CAS  Google Scholar 

  • Walsh J, Waters CA, Freeling M (1998) The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes Dev 12:208–218

    Article  CAS  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  CAS  Google Scholar 

  • Wang L, Gu X, Xu D, Wang W, Wang H, Zeng M, Chang Z, Huang H, Cui X (2011) miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot 62:761–773

    Article  CAS  Google Scholar 

  • Wei X, Wang X, Guo S, Zhou J, Shi Y, Wang H, Dou D, Song X, Li G, Ku L, Chen Y (2016) Epistatic and QTLxenvironment interaction effects on leaf area-associated traits in maize. Plant Breed 135:671–676

    Article  CAS  Google Scholar 

  • Wills DM, Whipple CJ, Takuno S, Kursel LE, Shannon LM, Ross-Ibarra J, Doebley JF (2013) From many, one: genetic control of prolificacy during maize domestication. PLoS Genet 9:e1003604

    Article  CAS  Google Scholar 

  • Wu L, Zhang D, Xue M, Qian J, He Y, Wang S (2014) Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height. J Integr Plant Biol 56:1053–1063

    Article  CAS  Google Scholar 

  • Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X, Tian F (2017) Complex genetic architecture underlies maize tassel domestication. New Phytol 214:852–864

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China (2016YFD0100404), the National Natural Science Foundation of China (91535108), the Recruitment Program of Global Experts, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

YF, GX, CL, and FT designed the experiment. YF, GX, and HC analyzed the data. GX, HC, XW, QC, CH, DL, DX, JT, WW, SL, and CL collected phenotypic data and performed molecular analysis. YF, GX, CL, and FT wrote the manuscript.

Corresponding authors

Correspondence to Cong Li or Feng Tian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Xu, G., Chen, H. et al. QTL mapping for leaf morphology traits in a large maize-teosinte population. Mol Breeding 39, 103 (2019). https://doi.org/10.1007/s11032-019-1012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1012-5

Keywords

Navigation