Skip to main content
Log in

The analysis of functional genes in maize molecular breeding

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Molecular breeding is capable of improving important agricultural crop traits by controlling functional genes, aiming to attain high yield, stability and quality. During this process, the quantity and maneuverability of functional genes are important in determining breeding efficiency. In our research, 186 functional genes relating to maize agronomic traits, which are available for marker-assisted selection or genetic transformation strategies, were collected from the literature and projected onto an integration map. The traits corresponding to these functional genes included disease resistance, stress tolerance, tassel traits, ear traits, kernel-related traits, leaf traits and plant-type characteristics. The integration map demonstrated that these functional genes were unevenly distributed on maize chromosomes. The greatest and fewest numbers of functional genes were found on chromosomes 1 and 8, respectively. Moreover, 36, 25, 27, 23, 14, 15, 11, 6, 9 and 20 genes were found on chromosomes 1 to 10, respectively. Most of disease-resistant genes were found on chromosome 10, while the genes of kernel-related and leaf-related traits were found on chromosomes 4 and 2, respectively. Out of the 186 functional genes, 95 have been characterized using genetic mapping, 19 using map-based cloning, 53 using transposon-tagging cloning strategies and 19 using other methods. Thus, the number of functional genes identified in maize is still limited and further research on functional genes is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    CAS  PubMed  Google Scholar 

  • Albertsen MC, Beach LR, Howard J, Huffman GA (1995) Nucleotide sequences mediated male fertility and method of using same. United States Patent: US005478369A

  • Albertsen MC, Fox T, Trimnell M, Wu Y, Lowe K, Li B, Faller M (2009) Msca1 nucleotide sequences impacting plant male fertility and method of using same. United States Patent: US20090038027A1

  • Ambrose BA, Lerner D, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579

    CAS  PubMed  Google Scholar 

  • Bargsten JW, Nap JP, Sanchez-Perez GF, Dijk ADV (2014) Prioritization of candidate genes in QTL regions based on associations between traits and biological processes. BMC Plant Biol 14:330–342

    PubMed  PubMed Central  Google Scholar 

  • Becraft PW, Freeling M (1994) Genetic analysis of rough sheath1 developmental mutants of maize. Genetics 136:295–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bensen RJ, Johal GS, Crane V, Tossberg JT, Schnable PS, Meeley R, Briggs SP (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bentolila S, Guitton C, Bouvet N, Sailland A, Nykaza S, Freyssinet G (1991) Identification of an RFLP marker tightly linked to the Ht1 gene in maize. Theor Appl Genet 82:393–398

    CAS  PubMed  Google Scholar 

  • Bomblies K, Doebley JF (2006) Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY gene zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172:519–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:1235–1245

    CAS  PubMed  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) Ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cell in branch meristems of maize. Plant Cell 18:574–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    CAS  PubMed  Google Scholar 

  • Buckner B, Kerlson TL, Robertson DS (1990) Cloning of the yl locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2:867–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaubal R, Anderson JR, Trimnell MR, Fox TW, Albertsen MC, Bedinger P (2003) The transformation of anthers in the msca1 mutant of maize. Planta 216:778–788

    CAS  PubMed  Google Scholar 

  • Chen CX (2002) The characterization of maize south rust resistance, the analysis and fine-mapping by molecular markers of resistant gene. Dissertation, Shandong Agricultural University

  • Chen W, Chen ZL, Song WB, Dai JR, Lai JS (2013) Molecular mapping and candidate gene prediction of maize endosperm mutant Wrk1. J Maize Sci 21(1):27–31 (in Chinese)

    Google Scholar 

  • Chen X, Zhang H, Sun H, Luo H, Zhao L, Dong Z, Yan S, Zhao C, Liu R, Xu C, Li S, Chen H, Jin W (2017) Irregular pollen exine1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol 173:307–325

    CAS  PubMed  Google Scholar 

  • Chen XY (2012) Genetic analysis and rough mapping of maize male sterile mutant. Dissertation, Hunan Agricultural University

  • Chen Y, Liu H, Ali F, Scott MP, Ji Q, Frei UK, Lübberstedt T (2012) Genetic and physical fine mapping of the novel brown midrib gene bm6 in maize (Zea may L.) to a 180 kb region on chromosome 2. Theor Appl Genet 125:1223–1235

    CAS  PubMed  Google Scholar 

  • Chen YN, Chen JF, Wu JY (2014) Fine mapping of gene Rab1 for red glume collar in maize. Acta Agric Boreali Sin 29(2):7–12 (in Chinese)

    Google Scholar 

  • Chen YS, Chao Q, Tan GQ, Zhao J, Zhang MJ, Ji Q, Xu ML (2008) Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet 117:1241–1252

    CAS  PubMed  Google Scholar 

  • Cheng HL (2011) Fine mapping of two leaf mutant gene al and yl in maize. Dissertation, Henan Agricultural University

  • Cheng HL, Chen JF, Ding JQ, Wu JY (2011) Genetic analysis and gene mapping of a leaf mutant in maize. Acta Agric Boreali Sin 26(3):7–10(in Chinese)

  • Chintamanani S, Multani DS, Ruess H, Johal GS (2008) Distinct mechanisms govern the dosage-dependent and developmentally regulated resistance conferred by the maize Hm2 gene. Mol Plant-Microbe Interact 21:79–86

    CAS  PubMed  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K, Hake S (2007a) The heterochronic maize mutant corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549

    CAS  PubMed  Google Scholar 

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007b) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521

    CAS  PubMed  Google Scholar 

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241

    CAS  PubMed  Google Scholar 

  • Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize transcription factors and affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci U S A 111:18775–18780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603

    CAS  PubMed  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant-Microbe Interact 11:968–978

    CAS  PubMed  Google Scholar 

  • Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang ZW, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH (2002) Genetic, physical, and informatics resources for maize on the road to an integrated map. Plant Physiol 130:1598–1605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cossegal M, Chambrier P, Mbelo S, Balzergue S, Martin-Magniette ML, Moling A, Deborde C, Guyon V, Perez P, Rogowsky P (2008) Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels. Plant Physiol 146:1553–1570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui XY, Hu GY, Sun XJ, Tong SS, Chen ZF, Liu XG (2014) A genetic analysis and gene mapping of a new translucent and shrunken endosperm mutant in maize. J South Chin Agric Univ 35(5):31–35 (in Chinese)

    Google Scholar 

  • Da OESO, Lorbiecke R, Garg P, Müller L, Waßmann M, Lauert P, Scanlon M, Hsia AP, Schnable PS, Krupinska K, Wienand U (2004) The etched1 gene of Zea mays (L.) encodes a zinc ribbon protein that belongs to the transcriptionally active chromosome (TAC) of plastids and is similar to the transcription factor TFIIS. Plant J 38:923–939

    Google Scholar 

  • Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. Plant Cell 5:1241–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong A, Calderon-Urrea A, Dellaporta SL (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenanse required for stage-specific floral organ abortion. Cell 74:757–768

    CAS  PubMed  Google Scholar 

  • Ding J, Li H, Wang Y, Zhao R, Zhang X, Chen J, Xia Z, Wu J (2012) Fine mapping of Rscmv2, a major gene for resistance to sugarcane mosaic virus in maize. Mol Breed 30:1593–1600

    CAS  Google Scholar 

  • Dong Z, Jiang C, Chen X, Zhang T, Ding L, Song W, Luo H, Lai J, Chen H, Liu R, Zhang X, Jin W (2013) Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol 163:1306–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du X, Linghu J, Shang H, Reid LM, Zhu X, Wang J, Wang G (2015) Fine mapping of Leafy, a dominant mutant conferring extra leaves above the ear in maize. Euphytica 206:49–56

    CAS  Google Scholar 

  • Fink R, Gatti E, Gianfranceschi L, Gallavotti A, Isaac PG, Sari-Gorla M, Pe ME (2001) Localization and fine mapping of gaMS-1, a male gametophytic mutant of maize. Sex Plant Reprod 14:95–99

    CAS  Google Scholar 

  • Fu S, Meeley R, Scanlon MJ (2002) Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. Plant Cell 14:3119–3132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, Mcsteen P (2008) Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci U S A 105:15196–15201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Wanat J, Stinard PS, James MG, Myers AM (1998) Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell 10:399–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray J, Close PS, Briggs SP, Johal GS (1997) A novel suppressor of cell death in plants encoded by the Llst1 gene of maize. Cell 89:25–31

    CAS  PubMed  Google Scholar 

  • Gross SM, Holick JB (2007) Multiple trans-sensing interactions affect meiotically heritable epigenetic states at the maize pl1 locus. Genetics 176:829–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan H, Liu C, Zhao Y, Zeng B, Zhao H, Jiang Y, Song W, Lai J (2012) Characterization, fine mapping and expression profiling of ragged leaves 1 in maize. Theor Appl Genet 125:1125–1135

    CAS  PubMed  Google Scholar 

  • Gutiérrez-Marcos JF, Dal Prà M, Giulini A, Costa LM, Gavazzi G, Cordelier S, Sellam O, Tatout C, Paul W, Perez P, Dickinson HG, Consonni G (2007) Empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. Plant Cell 19:196–210

    PubMed  PubMed Central  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)-a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    CAS  PubMed  Google Scholar 

  • Hao XM, Li XW, Yang XH, Li JS (2014) Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize. Mol Breed 34:739–748

    CAS  Google Scholar 

  • Harris LJ, Currie K, Chandler VL (1994) Large tandem duplication associated with a Mu2 insertion in Zea mays B-Peru gene. Plant Mol Biol 25:817–828

    CAS  PubMed  Google Scholar 

  • He Y (2004) Mapping and analysis of the resistance of bacterial brown spot disease in maize. Dissertation, China Agricultural University

  • Hochholdinger F, Wen TJ, Zimmermann R, Chimot-Marolle P, Silva ODC, Brue W, Lamkey KR, Wienand U, Schnable PS (2008) The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J 54:888–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holding DR, Otegui MS, Li B, Meeley RB, Dam T, Hunter BG, Jung R, Larkins BA (2007) The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell 19:2569–2582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong CP, Han S, Zhang YJ, Wang LJ, Wei HZ, Zhong SY, Liu BS (2012) Genetic analysis and gene mapping of sensitivity to nicosulfuron in corn. Acta Agric Boreali Sin 27(4):149–152 (in Chinese)

    Google Scholar 

  • Hu YM, Tang JH, Yang H, Xie HL, Lu XM, Niu JH, Chen WC (2006) Identification and mapping of Rf-I an inhibitor of the Rf5 restorer gene for Cms-C in maize (Zea mays L.). Theor Appl Genet 113:357–360

    CAS  PubMed  Google Scholar 

  • Huang RR, Zhou ZJ, Chen JF, Ding JQ, Wu JY (2012) Genetic analysis of defective kernel mutant and mapping of the mutant gene dek1-T7 in maize. Mol Plant Breed 10(2):163–168

    CAS  Google Scholar 

  • Huminiecki L, Bicknell R (2000) In silico cloning of novel endothelial-specific genes. Genome Res 10:1796–1806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 109(28):E1913–E1921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T, Herren G, Fitze MN, Breen J, Presterl T, Ouzunova M, Keller B (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci U S A 112:8780–8785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingvardsen CR, Xing Y, Frei UK, Lübberstedt T (2010) Genetic and physical fine mapping of Scmv2, a potyvirus resistance gene in maize. Theor Appl Genet 120:1621–1634

    PubMed  Google Scholar 

  • Irish E, Langdale JA, Nelson TM (1994) Interactions between tassel seed genes and other sex determining genes in maize. Dev Genet 15(2):155–171

    Google Scholar 

  • Jamann TM, Luo X, Morales L, Kolkman JM, Chung CL, Nelson RJ (2016) A remorin gene is implicated in quantitative disease resistance in maize. Theor Appl Genet 129:591–602

    CAS  PubMed  Google Scholar 

  • Jamann TM, Poland JA, Kolkman JM, Smith LG, Nelson RJ (2014) Unraveling genomic complexity at a quantitative disease resistance locus in maize. Genetics 198:333–344

    PubMed  PubMed Central  Google Scholar 

  • James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu Q, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jönsson H, Jackson D (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48:785–791

    CAS  PubMed  Google Scholar 

  • Je BI, Xu F, Wu Q, Liu L, Meeley R, Gallagher JP, Corcilius L, Payne RJ, Bartlett ME, Jackson D (2018) The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. Elife 7:e35673

    PubMed  PubMed Central  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

    CAS  PubMed  Google Scholar 

  • Kostadinovic M, Ignjatovic-Micic D, Wancetovic J, Ristic D, Bozinovic SG, Drinic SM (2016) Development of high tryptophan maize near isogenic lines adapted to temperate regions through marker assisted selection-impediments and benefits. PLoS One 11:e0167635

    PubMed  PubMed Central  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oroopeza-Rosas MA, Zwonitzer JC, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    CAS  PubMed  Google Scholar 

  • Laudencia-Chingcuanco D, Hake S (2002) The indeterminate floral apex1 gene regulates meristem determinacy and identify in the maize inflorescence. Development 129:2629–2638

    CAS  PubMed  Google Scholar 

  • Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868

    CAS  PubMed  Google Scholar 

  • Lawrence CJ, Seigfried TE, Brendel V (2005) The maize genetics and genomics database. The community resource for access to diverse maize data. Plant Physiol 138:55–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton ML, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J (2013a) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45(1):43–50

    CAS  PubMed  Google Scholar 

  • Li L (2011) Phenotype characterization and preliminary gene mapping of a novel bisexual mutant tassel silk florets (TSF1) in maize. Dissertation, Northwest A & F University

  • Li L, Li D, Liu S, Ma X, Dietrich CR, Hu HC, Zhang G, Liu Z, Zheng J, Wang G, Schnable PS (2013b) The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS One 8:e82333

    PubMed  PubMed Central  Google Scholar 

  • Li P, Xiao SL, Wang SX, Liu J, Zhao XR, Chen HB (2014) Fine mapping of fertility restorer gene Rf3 of S-type cytoplasmic male sterility and candidate gene prediction in maize. Shandong Agric Sci 6(8):1–5 (in Chinese)

    CAS  Google Scholar 

  • Li SZ, Cao MJ, Rong TZ, Pan GT, Zhu YG (2007) SSR mapping of maize genetic male sterile gene induced by space flight. Chin High Technol Lett 17(8):869–873 (in Chinese)

    CAS  Google Scholar 

  • Li WH, Xu XD, Li G, Guo QL, Wu SW, Jiang Y, Dong HY, Weng ML, Jin DM, Wu YJ, Ru ZG, Wang B (2012) Characterization and molecular mapping of RsrR, a resistant gene to maize head smut. Euphytica 187:303–311

    CAS  Google Scholar 

  • Li XH, Zhang SH, Fu JH (2000) The research on the chromosomal localization of resistance to disease and pests in maize. J Maize Sci 8(1):15–18 (in Chinese)

    Google Scholar 

  • Li YL, Yu YL, Liu YY, Li XH, Fu JF, Zhang ZY, Chen HQ (2008) Mapping on two maize nuclear male sterile genes by space mutagenesis using SSR markers. J Henan Agric Univ 42(3):245–249 (in Chinese)

    Google Scholar 

  • Li YR (2014) Etiolation mutant gene mapping via bulked segregant RNA-Seq (BSR-Seq) method in maize. Dissertation, Huazhong Agricultural University

  • Liang YH, Zhou HS, Jiang WR (2000) RFLP mapping of a male sterile gene (ms30) in maize. Acta Agron Sin 26(3):266–270 (in Chinese)

    Google Scholar 

  • Lid SE, Gruis D, Juang R, Lorentzen JA, Ananiev E, Chamberlin M, Niu XM, Meeley R, Nichols S, Olsen OA (2002) The defective kernel1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci U S A 99:5460–5465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z (2015) KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11(11):e1005670

    PubMed  PubMed Central  Google Scholar 

  • Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J, Lübberstedt T, Xu M (2017) An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Mol Plant 10:483–497

    CAS  PubMed  Google Scholar 

  • Liu S, Dietrich CR, Schnable PS (2009) DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles. Genetics 183:1215–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7:e36406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu MY, Chen CX, Gao LW, Xi ZY (2012a) Fine mapping of the major QTL qph1-4 for dwarf in maize (Zea mays L.). J Henan Agric Univ 46(3):242–246 (in Chinese)

  • Lu XM, Hu XJ, Zhao YZ, Song WB, Zhang M, Chen ZL, Chen W, Dong YB, Wang ZH, Lai JS (2012b) Map-based cloning of zb7 encoding an IPP and DMAPP synthase in the MEP pathway of maize. Mol Plant 5:1100–1112

    CAS  PubMed  Google Scholar 

  • Lunde C, Hake S (2009) The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize. Genetics 181:1693–1697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo HS (2013) Genetic analysis and rough mapping of maize genetic male sterile gene 8001s. Dissertation, Hunan Agricultural University

  • Lv H, Zheng J, Wang T, Fu J, Huai J, Min H, Zhang X, Tian B, Shi Y, Wang G (2014) The maize d2003, a novel allele of vp8, is required for maize internode elongation. Plant Mol Biol 84:243–257

    CAS  PubMed  Google Scholar 

  • Ma Y, Slewinski TL, Baker RF, Braun DM (2009) Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning. Plant Physiol 149:181–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma ZR, Dooner HK (2004) A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. Plant J 37:92–103

    CAS  PubMed  Google Scholar 

  • Mace ES, Jordan DR (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121:1339–1356

    CAS  PubMed  Google Scholar 

  • Maitz M, Santandrea G, Zhang Z, Lal S, Hannah LC, Salamini F, Thompson RD (2000) Rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J 23:29–42

    CAS  PubMed  Google Scholar 

  • Makarevitch I, Thompson A, Muehlbauer GJ, Springer NM (2012) Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One 7:e30798

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen MD (1994) Three genetic loci control resistance to wheat streak mosaic virus in the maize inbred Pa405. Mol Plant-Microbe Interact 7:708–712

    CAS  Google Scholar 

  • McSteen P, Hake S (2001) Barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128:2881–2891

    CAS  PubMed  Google Scholar 

  • Meyer J, Pei D, Wise RP (2011) Rf8-mediated T-urf13 transcript accumulation coincides with a pentatricopeptide repeat cluster on maize chromosome 2L. Plant Genome 4:283–299

    CAS  Google Scholar 

  • Ming R, Brewbaker JL, Pratt RC, Musket TA, McMullen MD (1997) Molecular mapping of a major gene conferring resistance to maize mosic virus. Theor Appl Genet 95:271–275

    CAS  Google Scholar 

  • Moose SP, Sisco PH (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027

    CAS  PubMed  Google Scholar 

  • Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M (1997) Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev 11:616–628

    CAS  PubMed  Google Scholar 

  • Mou XY, Liu Y, Wang GY, Zheng J (2014) Genetic analysis and gene mapping of a maize drought sensitive mutant. J Plant Genet Resour 15(3):615–619 (in Chinese)

    Google Scholar 

  • Muehlbauer GJ, Riera-Lizarazu O, Kynast RG, Martin D, Phillips RL, Rines HW (2001) A maize chromosome 3 addition line of oat exhibits expression of the maize homeobox gene liguleless3 and alteration of cell fates. Genome 43:1055–1064

    Google Scholar 

  • Myers AM, James MG, Lin Q, Yi G, Stinard PS, Hennen-Bierwagen TA, Becraft PW (2011) Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. Plant Cell 23:2331–2347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nardmann J, Ji J, Werr W, Scanlon MJ (2004) The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131:2827–2839

    CAS  PubMed  Google Scholar 

  • Nash J, Luehesen KR, Walbot V (1990) Bronze-2 gene of maize: reconstruction of a wild-type allele and analysis of transcription and splicing. Plant Cell 2:1039–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SR, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    CAS  PubMed  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory cl locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pechan T, Jiang BH, Steckler D, Ye LJ, Luthe DS, William WP (1999) Characterization of three distinct cDNA clones encoding cysteine proteinases from maize (Zea mays L.) callus. Plant Mol Biol 40:111–119

    CAS  PubMed  Google Scholar 

  • Phillps KA, Skirpan AL, Kaplinsky NJ, McSteen P (2009) Developmental disaster1: a novel mutation causing defects during vegetative and inflorescence development in maize (Zea mays, Poaceae). Am J Bot 96:420–430

    Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108:6893–6898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porch TG, Tseung CW, Schmelz EA, Settles AM (2006) The maize viviparous10/viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J 45:250–263

    CAS  PubMed  Google Scholar 

  • Qi HY, Li WH, Fu ZY, Ding D, Hu YM, Tang JL (2013) Genetic analysis and linkage mapping of a recessive dwarf mutant in maize. J Henan Agric Univ 47(3):246–249 (in Chinese)

    Google Scholar 

  • Qiu LJ, Guo Y, Li Y, Wang XB, Zhou GA, Liu ZX, Zhou SR, Li XH, Ma YZ, Wang JK, Wan JM (2011) Novel gene discovery of crops in China: status, challenging, and perspective. Acta Agron Sin 37(1):1–17

    CAS  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu XM, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li BL, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Giuliani S, Ricciolini C, Carraro N, Maccaferri M, Presterl T, Ouzunova M, Tuberosa R (2016) Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. J Exp Bot 67(4):1149–1159

    PubMed  PubMed Central  Google Scholar 

  • Sanz-Alferez S, Richter TE, Hulbert SH, Bennetzen JL (1995) The Rp3 disease resistance gene of maize: mapping and characterization of introgressed alleles. Theor Appl Genet 91:25–32

    CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim HR, Lee SH, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan CZ, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy M, McMahan L, Buren PV, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Brad Barbazuk W, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Yan F, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, Miguel PS, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu QH, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  Google Scholar 

  • Sharma M, Cortes-Cuz M, Ahern KR, McMullen M, Brutnell TP, Chopra S (2011) Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize. Genetics 188:69–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan MJ, Kennedy LM, Costich DE, Brutnell TP (2007) Subfunctionalization of PhyB1 and PhyB2 in the control seeding and mature plant traits in maize. Plant J 49:338–353

    CAS  PubMed  Google Scholar 

  • Shure M, Wessier S, Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35:225–233

    CAS  PubMed  Google Scholar 

  • Simcox KD, McMullen MD, Louie R (1995) Co-segregation of the maize dwarf mosaic virus resistance gene, Mdm1, with the nucleolus organizer region in maize. Theor Appl Genet 90:341–346

    CAS  PubMed  Google Scholar 

  • Sisco PH (1991) Duplications complicate genetic mapping of Rf4, a restorer for CMS-C cytoplasmic male sterility in corn. Crop Sci 31:1263–1266

    CAS  Google Scholar 

  • Smith LG, Gerttula SM, Han SC, Levy J (2001) Tangled1: a microtubule binding protein required for the spatial control of cytokinesis in maize. J Cell Biol 152:231–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somaratne Y, Tian Y, Zhang H, Wang M, Huo Y, Cao F, Zhao L, Chen H (2017) Abnormal Pollen Vacuolation1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J 90(1):96–110

    CAS  PubMed  Google Scholar 

  • Song PJ, Ji HQ, Pei DM, Hu YM (2011) Discovery and genetic analysis of a new ecological-sensitive genic male sterile line in maize. J Henan Agric Univ 45(2):133–136 (in Chinese)

    Google Scholar 

  • Sturaro M, Hrtings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of glossy1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan TD, Strelow LI, lllingworth CA, Phillips RL, Nelson OE Jr. (1991) Analysis of the maize Brittle-1 alleles and a defective suppressor-Mutator-induced mutable allele. Plant Cell 3:1337–1348

  • Sun LL, Lin XE, Xie HL, Fu ZY, Tang JH (2007) The tagging molecular markers for red silk gene in maize inbred K12. J Henan Agric Univ 41(5):480–482 (in Chinese)

    CAS  Google Scholar 

  • Sun X, Qi W, Yue Y, Ling H, Wang G, Song R (2016) Maize ZmVPP5 is a truncated vacuole H+ -PPase that confers hypersensitivity to salt stress. J Integr Plant Biol 58(6):518–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XJ (2013) Genetic analysis and map-based cloning of two endosperm mutant in maize. Dissertation, Jilin Agricultural University

  • Suzuki M, Latshaw S, Sato Y, Settles AM, Koch KE, Hannah LC, Kojima M, Sakakibara H, McCarty DR (2008) The maize viviparous8 locus, encoding a putative altered meristem program1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol 146:1193–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Settles AM, Tseung CW, Li QB, Ltshaw S, Wu S, Porch TG, Schmelz EA, James MG, McCarty DR (2006) The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J 45:264–274

    CAS  PubMed  Google Scholar 

  • Tacke E, Korfhange C, Michel D, Maddaloni M, Motto M, Lanzini S, Salamini F, Döring HP (1995) Transponson tagging of the maize glossy2 locus with the transposable element En/Spm. Plant J 8:907–917

    CAS  PubMed  Google Scholar 

  • Tan YQ, Xie CX, Jiang HY, Ye H, Xiang Y, Zhu SW, Cheng BJ (2011) Molecular mapping of genes for opposite leafing in maize using simple-sequence repeat markers. Genet Mol Res 10:3472–3479

    CAS  PubMed  Google Scholar 

  • Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS (2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J 77:380–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang JH, Fu ZY, Hu YM, Li JS, Sun LL, Ji HQ (2006) Genetic analyses and mapping of a new thermo-sensitive genic male sterile gene in maize. Theor Appl Genet 113:11–15

    CAS  PubMed  Google Scholar 

  • Tang JH, Liu ZH, Chen WC, Hu YM, Ji HQ, Ji YL (2001) The SSR markers of the main restorer genes for Cms-C cytoplasmic male sterility in maize. Agr Sci Chin 4(6):592–596 (in Chinese)

    Google Scholar 

  • Taramino G, Sauer M, Stauffer JL Jr, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659

    CAS  PubMed  Google Scholar 

  • Teng F, Zhai LH, Liu RX, Bai W, Wang LQ, Huo DA, Tao YS, Zheng YL, Zhang ZX (2013). ZmGA3ox2, a candidate gene for a major QTL,qPH3.1, for plant height in maize.Plant Journal, 73(3):405-416

  • Thomsberry JM, Goodman MM, Doebley J, Doebley J, Kresovich S, Nielsen D, Kuckler ES 4th (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    CAS  PubMed  Google Scholar 

  • Tian Y, Xiao S, Liu J, Somaratne Y, Zhang H, Wang M, Zhang H, Zhao L, Chen H (2017) MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep 7(1):16736

    PubMed  PubMed Central  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The Brown Midrib3 (Bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126

    CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  PubMed  Google Scholar 

  • Walsh J, Waters CA, Freeling M (1997) The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes Dev 12:208–218

    Google Scholar 

  • Wang BM, Li ZX, Ran QJ, Li P, Peng ZH, Zhang JR (2018a) ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Front Plant Sci 9:709–722

    PubMed  PubMed Central  Google Scholar 

  • Wang CJ, Nan GL, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya IN, Harper L, Egger R, Walbot V, Cande WZ (2012a) Maize multiple archesporial cells1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development 139:2594–2603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Qi W, Wu Q, Yao D, Zhang J, Zhu J, Wang G, Wang G, Tang Y, Song R (2014) Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiol 165:582–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Sun XL, Wang GF, Wang F, Gao Q, Sun X, Tang YP, Chang C, Lai JS, Zhu LH, Xu ZK, Song RT (2011) Opaque7 encodes an acyl-activating enzyme-like protein that affects storage protein synthesis in maize endosperm. Genetics 189:1281–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Wang F, Wang G, Wang F, Zhang X, Zhong M, Zhang J, Lin D, Tang Y, Xu Z, Song R (2012b) Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. Plant Cell 24:3447–3462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Nussbaun-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Bombies K, Lukens L, Deobley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xiao ZX, Wang FG, Xiao YN, Zhao JR, Zheng YL, Qiu FZ (2012c) Mapping of HtNB, a gene conferring non-lesion resistance before heading to Exserohilum turcicum (pass.), in a maize inbred line derived from the Indonesian variety Bramadi. Genet Mol Res 11:2523–2533

    CAS  PubMed  Google Scholar 

  • Wang HQ, Wang K, Du QG, Wang YF, Fu ZY, Guo ZY, Kang DM, Li WX, Tang JH (2018b) Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol 218:1233–1246

    CAS  PubMed  Google Scholar 

  • Wang HX (2014) Genetic analysis and gene mapping of a new virescent-yellow leaf mutant in maize. Dissertation, Sichuan Agricultural University

  • Wang HY (2012) Genetic analysis and map-based cloning of maize endosperm mutant Su5. Dissertation, Jilin University

  • Wang LJ, Ha LD, Zhang SM, Xu CH, Liu BS (2008) Identification and genetic analysis of a new dwarf mutant gene in maize. Acta Agric Boreali Sin 23(5):23–25 (in Chinese)

    CAS  Google Scholar 

  • Wang LJ, Han S, Zhong SY, Wei HZ, Zhng YJ, Zhao Y, Liu BS (2013) Characterization and fine mapping of a necrotic leaf mutant in maize (Zea mays L.). J Genet Genom 40:307–314

    CAS  Google Scholar 

  • Wang XL, Wang HW, Liu SX, Ferjani A, Li JS, Yan JB, Yang XH, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233

    CAS  PubMed  Google Scholar 

  • Wang Y, Gu RH, Chen HW, Shi HC, Yu XJ, Zhang HJ, Zhao CY, Sun Q, Ke YP (2015a) Characterization and genetic mapping of a novel recessive genic male sterile gene ms305 in maize (Zea mays L.). Israel J Plant Sci 62:208–214

    Google Scholar 

  • Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physicol 138:1637–1643

    CAS  Google Scholar 

  • White SE, Doebley JF (1999) The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics 153:1455–1462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler RG, Helentijaris T (1995) The maize dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7(8):1307–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wise RP, Schnable PS (1994) Mapping complementary genes in maize: positioning the rf1 and rf2 nuclear-fertility restorer loci of Texas (T) cytoplasm relative to RFLP and visible markers. Theor Appl Genet 88:785–795

    CAS  PubMed  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96:120–129

    CAS  PubMed  Google Scholar 

  • Wright AD, Moehlenkamp CA, Perrot GH, Neuffer MG, Cone KC (1992) The maize auxotrophic mutant orange pericarp is defective in duplicate genes for trytophan synthase β. Plant Cell 4:711–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright AJ, Gallagher K, Smith LG (2009) Discordia1 and alternative discordia1 function redundantly at the cortical divison site to promote preprophase band formation and orient division planes in maize. Plant Cell 21:234–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HB, Zhu RC, Zhao DG (2004) Introduction to the TILLING strategy. Mol Plant Breed 2(4):574–580

    CAS  Google Scholar 

  • Wu JY, Tang JH, Xia ZL, Chen WC (2002) Molecular tagging of a new resistance gene to maize dwarf mosaic virus using microsatellite markers. Acta Bot Sin 44(2):177–180 (in Chinese)

    CAS  Google Scholar 

  • Wu Y, Hershey H (2011) Nucleotide sequences mediating male fertility and method of using same. United States Patent: US20110173725A1

  • Xi ZY, Zhang SH, Li XH, Xie CX, Li MS, Hao ZF, Zhang DG, Liang YH, Bai L, Zhang SH (2008) Identification and mapping of a novel sugarcane mosaic virus resistance gene in maize. Acta Agron Sin 34(9):1494–1499

    CAS  Google Scholar 

  • Xu L, He Y, Zhang DF, Dai JR, Wang SC (2009) Identification and fine-mapping of a bacterial brown spot disease resistance gene in maize. Mol Breed 23:709–718

    CAS  Google Scholar 

  • Xu X, Dietrich CR, Delledonne M, Xia Y, Wen TJ, Robertson DS, Nikolau BJ, Schnable PS (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code foe a β-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DE, Jin DM, Wang B, Zhang DS, Nguyen HT, Zhang CL, Chen SJ (2005a) Characterization and mapping of Rpi1, a gene that confers dominant resistance to stalk rot in maize. Mol Gen Genomics 274:229–234

    CAS  Google Scholar 

  • Yang DE, Zhang CL, Zhang DS, Jin DM, Weng ML, Chen SJ, Nguyen H, Wang B (2004) Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1. Theor Appl Genet 108:706–711

    CAS  PubMed  Google Scholar 

  • Yang Q, Balint-Kurti P, Xu M (2017) Quantitative disease resistance: dissection and adoption in maize. Mol Plant 10:402–413

    CAS  PubMed  Google Scholar 

  • Yang W, Zheng Y, Zheng W, Feng R (2005b) Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize. Mol Breed 15:257–269

    Google Scholar 

  • Yao GQ, Shan J, Cao B, Cui LG, Du SL, Liu TS, Li CL, Wang LM (2013) Mapping the maize southern rust resistance gene of inbred line CML 470. J Plant Genet Resour 14(3):518–522 (in Chinese)

    Google Scholar 

  • Yin X, Wang Q, Yang J, Jin D, Wang F, Wang B, Zhang J (2003) Fine mapping of the Ht2 (Helminthosporium turcicum resistance 2) gene in maize. Chin Sci Bull 48(2):165–169

    CAS  Google Scholar 

  • Yu Y, Shi Z, Hu H, Li Y, Wang J (2015) Responses to nicosulfuron of hydroponic seedlings of near-isogenic lines of waxy corns with different resistances. Agric Res Arid Areas 33(2):87–90 (in Chinese)

    Google Scholar 

  • Zha XM (2015) Screening of insect-resistant related mutants and preliminary mapping of related genes in maize. Dissertation, Chinese Academy of Agricultural Sciences

  • Zhang DF, Wu SW, An XL, Xie K, Dong ZY, Zhou Y, Xu LW, Fang W, Liu SS, Liu SS, Zhu TT, Li JP, Ran LQ, Zhao JR, Wan XY (2018a) Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J 16:459–471

    CAS  PubMed  Google Scholar 

  • Zhang H, Liu X, Zhang YE, Jiang C, Cui DZ, Liu HH, Li DT, Wang LW, Chen TT, Ning LH, Ma X, Chen HB (2012) Genetic analysis and fine mapping of the Ga1-S gene region conferring cross-incompatibility in maize. Theor Appl Genet 124:459–465

    CAS  PubMed  Google Scholar 

  • Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C (2018b) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 217(3):1161–1176

    CAS  PubMed  Google Scholar 

  • Zhang SS, Xi ZY, An YQ, Li MN, Xie HL, Zhang YY, Cui JX, Chen YH, Wu LC (2015) Initial genetic mapping of a tassel seed gene Ts9 in maize. J Henan Agric Univ 49(3):301–310 (in Chinese)

    Google Scholar 

  • Zhang XL (2013a) Resistance analysis on the northern leaf blight and southern corn rust of corn inbred lines. Dissertation, The Chinese Academy of Agriculture Science

  • Zhang Y (2013b) Genetic analyses and gene tagging of maize cob color mutant obtained by radiation. Dissertation, Sichuan Agricultural University

  • Zhang Y, Xu L, Zhang DF, Dai JR, Wang SC (2010a) Mapping of southern corn rust-resistant genes in the W2D inbred line of maize (Zea mays L.). Mol Breed 25:433–439

    CAS  Google Scholar 

  • Zhang ZM, Liu L, Wang J, Zhao MJ, Pang GT (2010b) Cloning and characterization of a senescence associated protein gene (ZmSAP) induced by Rhizoctonia solani in maize. Acta Phytopathol Sin 40(4):373–380 (in Chinese)

    Google Scholar 

  • Zhao JJ (2015) Mapping of a novel hermo-sensitive genic male sterile gene in maize. Chin Agric Inform 9:38–39 (in Chinese)

    Google Scholar 

  • Zhao PF, Zhang GB, Wu XJ, Li N, Shi DY, Zhang DF, Ji CF, Xu ML, Wang SC (2013) Fine mapping of RppP25, a southern rust resistance gene in maize. J Integr Plant Biol 55:462–472

    CAS  PubMed  Google Scholar 

  • Zhao RB, Wang YX, Ding JQ, Zhang XC, Wu JY (2011) Fine mapping of resistance gene Rscmv1 to maize dwarf mosaic virus. J Maize Sci 194(4):10–13 (in Chinese)

    Google Scholar 

  • Zhao XR, Tan GQ, Xing YX, Lai W, Chao Q, Zuo WL, Lübberstedt T, Xu ML (2012b) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breed 30:1077–1088

    Google Scholar 

  • Zhao YZ, Lu XM, Liu CX, Guan HY, Zhang M, Li ZF, Cai HW, Lai JS (2012a) Identification and fine mapping of rhm1 locus for resistance to southern corn leaf blight in maize. J Integr Plant Biol 54:321–329

    CAS  PubMed  Google Scholar 

  • Zheng PZ, Allen WB, Roesler K, Willams ME, Zhang SR, Li JM, Classman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    CAS  PubMed  Google Scholar 

  • Zhong SY, Wang HH, Zhao Y, Xu CL, Han S, Liu BS (2013) Identification and molecular mapping of an albino mutant gene as-81647 in maize (Zea mays L.). Shandong Agric Sci 45(10):12–15 (in Chinese)

    Google Scholar 

  • Zhou CJ, Chen CX, Cao PX, Wu SW, Sun JW, Jin DM, Wang B (2007) Characterization and fine mapping of RppQ, a resistance gene to southern corn rust in maize. Mol Gen Genomics 278:723–728

    CAS  Google Scholar 

  • Zhou Y, Han YJ, Li ZG, Fu Y, Fu ZY, Xu ST, Li JS, Yan JB, Yang XH (2012) ZmcrtRB3 encodes a carotenoid hydroxylase that affects the accumulation of α-carotene in maize kernel. J Integr Plant Biol 54:260–269

    CAS  PubMed  Google Scholar 

  • Zhou Z, Song L, Zhang X, Li X, Yan N, Xia R, Zhu H, Weng J, Hao Z, Zhang D, Yong H, Li M, Zhang S (2016) Introgression of opaque2 into waxy maize causes extensive biochemical and proteomic changes in endosperm. PLoS One 11:e0158971

    PubMed  PubMed Central  Google Scholar 

  • Zhu CL, Zhang GR, Shao SH, Peng XH, Du JY (2010) Analysis on Silico cloning of cryptochrome1 gene from Zea Mays and bioinformatics. J Maize Sci 18(2):30–36 (in Chinese)

    Google Scholar 

  • Zuo WL, Chao Q, Zhang N, Ye JR, Tan GQ, Li BL, Xing YX, Zhang BQ, Liu HJ, Fengler KA, Zhang J, Zhao XR, Chen YS, Lai JS, Yan JB, Xu ML (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47:151–157

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (31371629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangying Xi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claimsin published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Zhan, W., Li, W. et al. The analysis of functional genes in maize molecular breeding. Mol Breeding 39, 30 (2019). https://doi.org/10.1007/s11032-018-0900-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0900-4

Keywords

Navigation