Skip to main content
Log in

Comparative functional genomics of the TPR gene family in Arabidopsis, rice and maize

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The tetratricopeptide repeat (TPR) proteins found in all kingdoms of life can mediate protein-protein interactions in a variety of biological systems through binding to specific peptide ligands, such as cell cycle control, transcription, protein transport and protein folding. Although the proteins are ubiquitous, no comprehensive overview of them in Arabidopsis thaliana (At), Oryza sativa (Os), Zea mays (Zm) and Populus trichocarpa (Pt) has been available in the literature till now. Through whole genome investigation, 177 Arabidopsis, 216 rice, 211 maize and 243 poplar TPR genes were identified and categorized into 28 subfamilies and 11 groups based on their domain compositions and phylogenetic relationships, respectively. Phylogenetic analysis revealed that most genes in the same subfamilies are classified into at least two groups, implying that TPR proteins have acquired functional diversity by extensive domain shuffling and/or emerged multiple times independently during evolution. Structural analysis of ZmTPR080 showed that eight TPR motifs as two anti-parallel α-helices form an amphipathic groove capable of accepting a target protein peptide. Similar expression patterns across development stages suggested functional conservation between homologous pairs, for example, AtTPR050/ZmTPR049 may have similar functions in the regulation of flowering. Under drought stress, 26 OsTPRs showed strong alterations of their expression levels in rice leaf, while 10 and 49 ZmTPRs were significantly differentially expressed in maize leaf and cob, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Aviezerhagai K, Skovorodnikova J, Galigniana MD et al (2007) Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90. Plant Mol Biol 63:237–255

    Article  CAS  Google Scholar 

  • Bell SA, Hunt AG (2010) The Arabidopsis ortholog of the 77 kDa subunit of the cleavage stimulatory factor (AtCstF-77) involved in mRNA polyadenylation is an RNA-binding protein. FEBS Lett 584:1449–1454

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan NH, Friso G, Poliakov A et al (2015) MET1 is a Thylakoid-associated TPR protein involved in Photosystem II Supercomplex formation and repair in Arabidopsis. Plant Cell Online 27:262–285

    Article  CAS  Google Scholar 

  • Champion EA, Lane BH, Jackrel ME et al (2008) A direct interaction between the Utp6 half-a-Tetratricopeptide repeat domain and a specific peptide in Utp21 is essential for efficient pre-rRNA processing. Mol Cell Biol 28:6547–6556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Dodd IC, Davies WJ, Wilkinson S (2013) Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves. Plant Cell Environ 36:1850–1859

    Article  CAS  PubMed  Google Scholar 

  • Chewawiwat N, Yano M, Terada K et al (1999) Characterization of the novel mitochondrial protein import component, Tom34, in mammalian cells. J Biochem 125:721–727

    Article  CAS  PubMed  Google Scholar 

  • Christians MJ, Gingerich DJ, Hansen M et al (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J 57:332–345

    Article  CAS  PubMed  Google Scholar 

  • Dühring U, Irrgang KD, Lünser K et al (2006) Analysis of photosynthetic complexes from a cyanobacterial ycf37 mutant. Biochim Biophys Acta 1757:3–11

    Article  PubMed  Google Scholar 

  • Dühring U, Ossenbühl F, Wilde A (2007) Late assembly steps and dynamics of the Cyanobacterial Photosystem I. J Biol Chem 282:10915–10921

    Article  PubMed  Google Scholar 

  • El Zawily AM, Schwarzlander M, Finkemeier I et al (2014) FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis. Plant Physiol 166:808–828

    Article  PubMed  PubMed Central  Google Scholar 

  • Felder S, Meierhoff K, Sane AP et al (2001) The nucleus-encoded HCF107 gene of Arabidopsis provides a link between Intercistronic RNA processing and the accumulation of translation-competent psbH transcripts in chloroplasts. Plant Cell 13:2127–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldheim D, Schekman R (1994) Sec72p contributes to the selective recognition of signal peptides by the secretory polypeptide translocation complex. J Cell Biol 126:935–943

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37

    Article  Google Scholar 

  • Gatto GJ, Geisbrecht BV, Gould SJ, Berg JM (2000) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 7:1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Golovkin M, Reddy ASN (2003) A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci U S A 100:10558–10563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray WM, Muskett PR et al (2003) Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell 15:1310–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenboimwainberg Y, Maymon I, Borochov R et al (2005) Cross talk between Gibberellin and Cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in Cytokinin Signaling. Plant Cell 17:92–102

    Article  CAS  Google Scholar 

  • Haucke V, Horst M, Schatz G, Lithgow T (1996) The Mas20p and Mas70p subunits of the protein import receptor of yeast mitochondria interact via the tetratricopeptide repeat motif in Mas20p: evidence for a single hetero-oligomeric receptor. EMBO J 15:1231–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Doyle MR, Amasino RM (2004) PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev 18:2774–2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyman J, De Veylder L (2012) The anaphase-promoting complex/Cyclosome in control of plant development. Mol Plant 5:1182–1194

    Article  CAS  PubMed  Google Scholar 

  • Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauss D, Bischof S, Steiner S et al (2012) FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the mg++−branch of this pathway. FEBS Lett 586:211–216

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Roach C, Hirsh IS et al (2001) An unexpected extended conformation for the third TPR motif of the peroxin PEX5 from Trypanosoma brucei. J Mol Biol 307:271–282

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Kim SH, Bhattacharjee S et al (2009) SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors. Plant J 57:109–119

    Article  CAS  PubMed  Google Scholar 

  • Lakhssassi N, Doblas VG, Rosado A et al (2012) The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE gene family is required for osmotic stress tolerance and male Sporogenesis. Plant Physiol 158:1252–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legrain P, Choulika A (1990) The molecular characterization of PRP6 and PRP9 yeast genes reveals a new cysteine/histidine motif common to several splicing factors. EMBO J 9:2775–2781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Xu Z, He G et al (2012) A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid. Biochem Biophys Res Commun 426:522–527

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu J, Wang G et al (2015a) A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell 27:908–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Chen Y, Ding Z et al (2015b) Nonuniform gene expression pattern detected along the longitudinal axis in the matured rice leaf. Sci Rep 5:8015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Arcigareyes L, Zhong S et al (2008) SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development. J Exp Bot 59:4271–4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Ho C, Grierson D (2009) AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. J Exp Bot 60:3697–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Ji Z, Pan Z et al (2013) The conserved Intronic cleavage and Polyadenylation site of CstF-77 gene imparts control of 3′ end processing activity through feedback autoregulation and by U1 snRNP. PLoS Genet 9:e1003613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasmyth K, Peters J, Uhlmann F (2000) Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288:1379–1384

    Article  CAS  PubMed  Google Scholar 

  • Naver H, Boudreau E, Rochaix J (2001) Functional studies of Ycf3 its role in assembly of Photosystem I and interactions with some of its subunits. Plant Cell 13:2731–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Khamai P, Garciacerdan JG, Melis A (2007) REP27, a tetratricopeptide repeat nuclear-encoded and chloroplast-localized protein, functions in D1/32-kD reaction center protein turnover and photosystem II repair from photodamage. Plant Physiol 143:1547–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Ma J, Chi W et al (2006) LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell 18:955–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérezpérez JM, Serralbo O, Vanstraelen M et al (2008) Specialization of CDC27 function in the Arabidopsis thaliana anaphase-promoting complex (APC/C). Plant J 53:78–89

    Article  Google Scholar 

  • Ponting CP (2000) Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. Biochem J 351(Pt 2):527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad BD, Goel S, Krishna P (2010) In Silico identification of Carboxylate clamp type Tetratricopeptide repeat proteins in Arabidopsis and Rice as putative co-chaperones of Hsp90/Hsp70. PLoS One 5:e12761

    Article  PubMed  PubMed Central  Google Scholar 

  • Qbadou S, Becker T, Mirus O et al (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J 25:1836–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin F, Kodaira K, Maruyama K et al (2011) SPINDLY, a negative regulator of Gibberellic acid Signaling, is involved in the plant Abiotic stress response. Plant Physiol 157:1900–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon NM, Bartel B (2010) Interdependence of the Peroxisome-targeting receptors in Arabidopsis Thaliana: PEX7 facilitates PEX5 accumulation and import of PTS1 cargo into Peroxisomes. Mol Biol Cell 21:1263–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosado A, Schapire AL, Bressan RA et al (2006) The Arabidopsis tetratricopeptide repeat-containing protein TTL1 is required for osmotic stress responses and abscisic acid sensitivity. Plant Physiol 142:1113–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozas J, Sanchezdelbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Schapire AL, Valpuesta V, Botella MA (2006) TPR proteins in plant hormone Signaling. Plant Signal Behav 1:229–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Schweiger R, Muller NC, Schmitt MJ et al (2012) AtTPR7 is a chaperone docking protein of the sec translocon in Arabidopsis. J Cell Sci 125:5196–5207

    Article  CAS  PubMed  Google Scholar 

  • Shao L (2012) Characterization of the TPR protein family and a putative photosynthetic protein from Synechocystis PCC 6803

  • She K, Kusano H, Koizumi K et al (2010) A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 22:3280–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikorski RS, Boguski MS, Goebl M, Hieter P (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307–317

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockel J, Bennewitz S, Hein P, Oelmuller R (2006) The evolutionarily conserved tetratrico peptide repeat protein pale yellow Green7 is required for photosystem I accumulation in Arabidopsis and copurifies with the complex. Plant Physiol 141:870–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Nakajima S, Morikami A, Nakamura K (2005) An Arabidopsis protein with a novel calcium-binding repeat sequence interacts with TONSOKU/MGOUN3/BRUSHY1 involved in meristem maintenance. Plant Cell Physiol 46:1452–1461

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Kim T, Osesprieto JA et al (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vonloeffelholz O, Kriechbaumer V, Ewan RA et al (2011) OEP61 is a chaperone receptor at the plastid outer envelope. Biochem J 438:143–153

    Article  CAS  PubMed Central  Google Scholar 

  • Wang C, Tian Q, Hou Z et al (2007) The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time. Plant Cell Rep 26:1357–1366

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Han P (2016) Pentatricopeptide repeat proteins in maize. Mol Breed 36:170

    Article  Google Scholar 

  • Wei K, Pan S (2014) Maize protein phosphatase gene family: identification and molecular characterization. BMC Genomics 15:773

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie F, Zhang B (2010) Target-align: a tool for plant microRNA target identification. Bioinformatics 26:3002–3003

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Wang J, Li Q et al (2003) AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132:861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yang Z, Gu S, Wang X et al (2008) Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and Rice. J Mol Evol 67:266–277

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Liao L, Bo T et al (2014) Slr0151 in Synechocystis sp. PCC 6803 is required for efficient repair of photosystem II under high-light condition. J Integr Plant Biol 56:1136–1150

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50

    Article  CAS  PubMed  Google Scholar 

  • Zentella R, Hu J, Hsieh WP et al (2016) O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis. Genes Dev 30:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng B, Chen X, Mccormick S (2011) The anaphase-promoting complex is a dual integrator that regulates both MicroRNA-mediated transcriptional regulation of Cyclin B1 and degradation of Cyclin B1 during Arabidopsis male gametophyte development. Plant Cell 23:1033–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the providers who submitted microarray and RNA-seq data to the public expression databases, which can be freely applied.

Funding

The project was supported by the Science and Technology Cooperation Project of Fujian Province, China (Grant No.2015I0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaifa Wei.

Electronic supplementary material

Table S1

The identified TPR proteins and their related information. 1 Isoelectric Point of TPRs. 2 Molecular Weight of TPRs. 3 Probability of export to mitochondria and chloroplast. 4 Predicted subcellular localization of TPRs. “C”, “M”, “S”, and “_” are represent as “chloroplast”, “mitochondrion”, “secretory pathway” and “any other location”, respectively. (PDF 461 kb)

Table S2

TPR protein information for polar (Populus trichocarpa). (PDF 105 kb)

Table S3

The Ka/Ks ratios and estimate of the absolute dates for the duplication events between the duplicated TPR gene pairs. (PDF 85 kb)

Table S4

The probe sets of AtTPR in this study. (PDF 33 kb)

Table S5

The normalized expression values (log2-based) of 161 Arabidopsis TPR genes in 63 tissues and developmental stages. (PDF 387 kb)

Table S6

The expression values of 125 OsTPR genes in 62 different tissues and development stages. (PDF 367 kb)

Table S7

List of 192 detected ZmTPR genes and their expression values in sixty distinct tissues in inbred line B73. (PDF 457 kb)

Table S8

Cis-acting elements were predicted from 1.5 kb upstream promoter region of the TPRs. (PDF 27 kb)

Table S9

OsTPR and ZmTPR expression patterns of successive stages of leaf development. (PDF 170 kb)

Table S10

The transcription levels of OsTPRs under drought stress in rice. (PDF 45 kb)

Table S11

The expression values of ZmTPRs in drought-stressed leaf and cob. MLC and MLD stand for well-watered control and drought stressed leaves, respectively, while MCC and MCD means well-watered control and drought stressed cobs, respectively. Numbers 1 and 2 indicate the two biological replicates. The extent of differential expression is measured in terms of fold change and (−) indicates failure to calculate or undetected values. Values highlighted in red and blue represent the expression levels of up-regulated and down-regulated genes, respectively. (PDF 99 kb)

Table S12

Primers used in this study. (PDF 11 kb)

Table S13

TPR genes and their regulatory miRNAs in Arabidopsis, rice and maize. (PDF 225 kb)

Fig. S1

Circos diagram of TPR gene pairs among Arabidopsis, rice and maize genomes. Outer two circles showed the distribution of each of the TPR genes and scaled chromosomes for each species in megabase (Mb) units, respectively. Histograms below each chromosome were the value of molecular weights (MWs) of TPR genes (blue <80, yellow ≥100); the two line plots were the isoelectric points (pIs) (green <7, yellow ≥7) and the repeat numbers of each TPRs (green <3, orange ≥16). (PDF 216 kb)

Fig. S2

An ML phylogenetic tree of TPR genes in Synechocystis PCC 6803, Arabidopsis, rice, maize and poplar. The TPR genes are grouped into eleven distinct groups (A-K). The gene names marked with the same colors belong to the same subfamilies, and the branch lines in different colors represent different species. Intron numbers of each TPR genes are shown on the right side. (PDF 481 kb)

Fig. S3

The map of exon/intron arrangement of TPR genes in Arabidopsis, rice and maize. (PDF 926 kb)

Fig. S4

Genomic distribution of AtTPR, OsTPR and ZmTPR genes on chromosomes. Different subfamilies of TPR genes were marked by different colors. (PDF 447 kb)

Fig. S5

Chromosomal segments containing TPR genes from Arabidopsis, rice and maize genomes. The Arabidopsis, rice and maize genomes are abbreviated as At, Os and Zm, respectively. Regions that putatively correspond to homologous genome blocks are connected by gray lines. (PDF 417 kb)

Fig. S6

The structure features of ZmTPR080. a Sequence alignment of eight motifs of ZmTPR080 (red, conserved residues; and blue, hydrophobic residues). Secondary structure of a typical TPR motif is shown above the alignment, with gray and purple bars representing helices. b Ramachandran plot and ERRAT result of ZmTPR080 homology structure. (PDF 553 kb)

Fig. S7

Hierarchial clustering display of TPR transcripts levels detected in distinct tissues in Arabidopsis, rice and maize. (PDF 855 kb)

Fig. S8

Expression profiling of TPR genes along rice and maize leaf developmental gradients. (PDF 467 kb)

Fig. S9

Pearson’s correlation of rice and maize gene expression based on 99 orthologous gene pairs. (PDF 461 kb) (PDF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Han, P. Comparative functional genomics of the TPR gene family in Arabidopsis, rice and maize. Mol Breeding 37, 152 (2017). https://doi.org/10.1007/s11032-017-0751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0751-4

Keywords

Navigation