Skip to main content
Log in

Characterization of a new allelic mutant of DWARF3 in rice and analysing its function and stability in the presence of strigolactone

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Strigolactones (SLs) are important intrinsic growth regulators that control plant architecture by coordinating shoot and root development. Recent studies demonstrate that SL signals act via targeting the degradation protein DWARF53 (D53) family of chaperonin-like proteins. This process requires DWARF14 (D14) as strigolactones signal receptor and DWARF3 (D3) forming Skp-Cullin-F-box (SCF) complex as ubiquitin E3 ligase. Although the interactions of these signal components can be expected, where and how the SLs signalling occur within cells in a tissue-specific manner is still uncertain. In this study, we characterize a rice high-tillering dwarf mutant, ext.-M1B, displaying resistance to synthetic strigolactone mixture rac-GR24. Through genetic analysis, we find that ext.-M1B is a new allelic mutant of D3 with a nucleotide mutation resulting in a truncated protein of wide-type D3. We demonstrate that the mutation affects neither gene expression level nor the protein sub-cellular localization, whereas it disrupts the perception of SLs signal in ext.-M1B mutant. Moreover, we find that overexpression of D3 in wild type background causes no significant phenotype, but suppression of D3 by RNA interfering results in a clear phenocopy of SL mutants. By expressing fluorescent D3 fusion protein in rice, we first show that D3 is stable consistently in the nucleus with or without strigolactone treatment. Taken together, our data indicates that D3 encoding an F-box protein in nucleus, as a stable signal component response to strigolactone regulating rice shoot architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T et al (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A 111:18084–18089. doi:10.1073/pnas.1410801111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agusti J, Herold S, Schwarz M et al (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci U S A 108:20242–20247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66(66):161

    Article  CAS  PubMed  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from b-carotene to carlactone, a strigolactone like plant hormone. Science 335:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchin S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Bennett T, Leyser O (2014) Strigolactone signalling: standing on the shoulders of DWARFs. Curr Opin Plant Biol 22:7–13

    Article  CAS  PubMed  Google Scholar 

  • Bennett T, Liang Y, Seale M, Ward S, Müller D, Leyser O (2016) Strigolactone regulates shoot development through a core signalling pathway. Biology Open 5:1806–1820

    PubMed  PubMed Central  Google Scholar 

  • Cardoso C, Zhang Y, Jamil M et al (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci U S A 111:2379–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P (2014) Strigolactone promotes degradation of DWARF14, an a/b hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26:1134–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witch weed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nature Rev Mol Cell Biol 12:211–221

    Article  CAS  Google Scholar 

  • Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci U S A 99:11519–11524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao ZY, Qian Q, Liu XH, Yan MX, Feng Q, Dong GJ, Liu J, Han B (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol 71:265–276

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Guo HS, Fei JF, Xie Q, Chua NH (2003) A chemical-regulated inducible RNAi system in plants. Plant J 34:383–392

    Article  CAS  PubMed  Google Scholar 

  • Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    Article  CAS  PubMed  Google Scholar 

  • He C, Lin Z, McElroy D, Wu R (2009) Identification of a rice actin2 gene regulatory region for high-level expression of transgenes in monocots. Plant Biotechnol J 7:227–239

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZH, Wang SQ, Deng QM, He TH, Li P (2006) Genetic analysis and molecular tagging on a novel excessive tillering mutant in Rice. Acta Genet Sin 33:339–344. doi:10.1016/S0379-4172(06)60059-0

  • Jiang L, Liu X, Xiong GS et al (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405

    Article  CAS  PubMed  Google Scholar 

  • de Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O (2014) Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiol 166:384–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18:147–160

    Article  CAS  PubMed  Google Scholar 

  • Kapulnik Y, Delaux PM, Resnick N et al (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Ward S, Li P, Bennett T, Leyser O (2016) SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms. Plant Cell 28:1581–1601. doi:10.1105/tpc.16.00286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Wang R, Qian Q et al (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230:649–658

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A 102:12270–12275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura H, Xue YL, Miyakawa T et al (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613

    PubMed  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:8897–8902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen A, Mason MG, De Cuyper C et al (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones. Plant Physiol 155:721–734

    Article  CAS  PubMed  Google Scholar 

  • de Saint GA, Ligerot Y, Dun EA, Pillot JP, Ross JJ, Beveridge CA, Rameau C (2013) Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol 163:1012–1025

    Article  Google Scholar 

  • Santer A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signalling. Plant J 61:1029–1040

    Article  Google Scholar 

  • Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM (2013) Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J 76:1–9

    CAS  PubMed  Google Scholar 

  • Shen H, Luong P, Huq E (2007) The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11(1):e1001474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Li J (2014) Signalling and responses to strigolactones and karrikins. Curr Opin Plant Biol 21:23–29

    Article  CAS  PubMed  Google Scholar 

  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2- dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirnberg P, van De Sande K, Leyser HM (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    CAS  PubMed  Google Scholar 

  • Stirnberg P, Furner IJ, Leyser HMO (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umehara M, Hanada A, Yoshida S et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: lessons from shoot branching. Plant J 79:607–622

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X (2013) Strigolactone/ MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27:681–688

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015a) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27:3128–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liang Y, Li L et al (2015b) Identification and cloning of tillering-related genes OsMAX1 in Rice. Rice Sci 22:255–263

    Article  Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Saika H, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M (2007) Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. Genes Genet Syst 82:361–366

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Ming Z, Yan L, Li S, Fei W, Sui M et al (2016) Dwarf14 is a non-canonical hormone receptor for strigolactone. Nature 536(7617):469

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su J, Duan S et al (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O et al (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps instrigolactone biosynthesis. Nat Chem Biol 10:1028–1033

    Article  PubMed  Google Scholar 

  • Zhao LH, Zhou XE, Wu ZS et al (2013) Crystal structures of two phytohormone signal-transducing a/b hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23:436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wang T, Wang M, Liu Y, Yuan S, Gao Y et al (2014) DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant Cell Physiol 55:1096–1109

    Article  CAS  PubMed  Google Scholar 

  • Zhao LH, Zhou XE, Yi W, Wu Z, Liu Y et al (2015) Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res 25:1219–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Lin QB, Zhu LH et al (2013) D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–696

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Sichuan Provincial Science and Technology Platform project and Sichuan Science and Technology Achievements Transformation Project, China. (2014GPTZ0010).

Author’s contributions

P.L., S.W. and Y. L designed most of the experiments and directed the project; Y.L. performed the entire experiments. X. H and H. W carried out the field experiments and investigations. F.L. performed the expression analysis, tissue localization; S.L., A.Z., J.Z., H.L., Q. D, and L.W. also contributed to the experimental design; Y.L., S.W., and P.L. analysed the data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Yueyang Liang and Shiquan Wang contributed equally to this work.

Electronic supplementary material

Fig. S1

Mutation caused frame shift results in a predicted stop codon in mutant. Comparison of DNA sequence and relative coding amino acid between wild-type and ext.-M1B showing the nucleotide mutation from A to CC leads to corresponding amino acid changed after site 334. The red asterisk indicates the predicted stop codon (JPEG 873 kb)

Fig. S2

Transcriptional level of D14 is increased in mutant. Expression of D3 and D14 in one-week-old rice seedlings of wild-type and ext.-M1B were determined by qRT-PCR using rice Actin as the internal reference. Values are means ± SEM (n = 3); **p < 0.01, determined by Student’s t-test (JPEG 118 kb)

Table S1

Primers used in this study (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Wang, S., Huang, X. et al. Characterization of a new allelic mutant of DWARF3 in rice and analysing its function and stability in the presence of strigolactone. Mol Breeding 37, 39 (2017). https://doi.org/10.1007/s11032-017-0640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0640-x

Keywords

Navigation