Skip to main content
Log in

Development of single nucleotide polymorphism markers in the large and complex rubber tree genome using next-generation sequence data

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The development of single nucleotide polymorphism (SNP) markers provides the opportunity to improve many areas of plant breeding and population genetics. Unfortunately, for species such as the rubber tree (Hevea brasiliensis), the use of next-generation sequencing for genomic SNP discovery is very difficult because of the large genome size and the abundance of repeated sequences. Access to a set of validated SNP markers is a significant advantage for rubber researchers who wish to apply SNPs in scientific research. Here, we performed genomic sequencing of H. brasiliensis and generated 10,993,648 short reads, which were assembled into 10,071 contigs (N50 = 3078) by a de novo assembly strategy. A total of 2446 contigs presented no hits in the current H. brasiliensis genome assembly and may therefore be considered novel genomic sequences of rubber tree. A total of 143 putative polymorphic positions were selected, gene annotations were available for 58.7 % of the markers, and all of the sequences could be anchored to the released H. brasiliensis genome. These SNPs were validated in eight genotypes of H. brasiliensis and 15 F1 plants from a mapping population, resulting in 30 (20.9 %) positions correctly classified. The analysis revealed key candidate genes responsible for defence mechanisms and provided markers for further genetic improvement of Hevea in breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bachlava E, Taylor CA, Tang S, Bowers JE, Mandel JR, Burke JM, Knapp SJ (2012) SNP discovery and development of a high-density genotyping array for sunflower. PLoS One 7:e29814. doi:10.1371/journal.pone.0029814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59. doi:10.1038/nature07517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. doi:10.1186/1471-2105-10-421

    Article  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. doi:10.1093/bioinformatics/btr330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. doi:10.1038/ng.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064. doi:10.1111/j.1365-313X.2005.02591.x

    Article  CAS  PubMed  Google Scholar 

  • Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8:967–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. Preprint at arXiv:1207.3907[q-bio.GN]

  • Gonçalves PS, Fontes JRA (2012) Domestication and breeding of the rubber tree. In: Borém A, Lopes MTG, Clement CR, Noda H (eds) Domestication and breeding: Amazon species. UFV, Viçosa, pp 393–420

    Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. doi:10.1093/nar/gkr944

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D, Fox P, Glasscock JI, Hickenbotham M, Huang W, Magrini VJ, Richt RJ, Sander SN, Stewart DA, Stromberg M, Tsung EF, Wylie T, Schedl T, Wilson RK, Mardis ER (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188. doi:10.1038/nmeth.1179

    Article  CAS  PubMed  Google Scholar 

  • Höck J, Meister G (2008) The Argonaute protein family. Genome Biol 9:210. doi:10.1186/gb-2008-9-2-210

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurka J, Klonowski P, Dagman V, Pelton P (1996) CENSOR—a program for identification and elimination of repetitive elements from DNA sequences. Comput Chem 20:119–121. doi:10.1016/S0097-8485(96)80013-1

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. doi:10.1186/gb-2013-14-4-r36

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: repbaseSubmitter and censor. BMC Bioinform 7:474. doi:10.1186/1471-2105-7-474

    Article  Google Scholar 

  • Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics 270:24–33. doi:10.1007/s00438-003-0891-6

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Searching for SNPs with cloud computing. Genome Biol 10:R134. doi:10.1186/gb-2009-10-11-r134

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Guen V, Gay C, Xiong TC, Souza LM, Rodier-Goud M, Seguin M (2011) Development and characterization of 296 new polymorphic microsatellite markers for rubber tree (Hevea brasiliensis). Plant Breed 130:294–296. doi:10.1111/j.1439-0523.2010.01774.x

    Article  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  • Li D, Deng Z, Qin B, Liu X, Men Z (2012) De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics 13:192. doi:10.1186/1471-2164-13-192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantello CC, Suzuki FI, Souza LM, Gonçalves PS, Souza AP (2012) Microsatellite marker development for the rubber tree (hevea brasiliensis): characterization and cross-amplification in wild hevea species. BMC Res Notes 5:329. doi:10.1186/1756-0500-5-329

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantello CC, Cardoso-Silva CB, da Silva CC, de Souza LM, Scaloppi Junior EJ, de Souza Gonçalves P, Vicentini R, de Souza AP (2014) De novo assembly and transcriptome analysis of the rubber tree (hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways. PLoS One 9:e102665. doi:10.1371/journal.pone.0102665

    Article  PubMed  PubMed Central  Google Scholar 

  • Pootakham W, Chanprasert J, Jomchai N, Sangsrakru D, Yoocha T, Therawattanasuk K, Tangphatsornruang S (2011) Single nucleotide polymorphism marker development in the rubber tree, hevea brasiliensis (Euphorbiaceae). Am J Bot 98:e337–e338. doi:10.3732/ajb.1100228

    Article  PubMed  Google Scholar 

  • Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100. doi:10.1016/S1369-5266(02)00240-6

    Article  CAS  PubMed  Google Scholar 

  • Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, Hou S, Ong SY, Ng FL, Lee LS, Tan HS, Sakaff MK, Teh BS, Khoo BF, Badai SS, Aziz NA, Yuryev A, Knudsen B, Dionne-Laporte A, Mchunu NP (2013) Draft genome sequence of the rubber tree hevea brasiliensis. BMC Genomics 14:75. doi:10.1186/1471-2164-14-75

    Article  PubMed  PubMed Central  Google Scholar 

  • Salgado LR, Koop DM, Pinheiro DG, Rivallan R, Le Guen V, Nicolás MF, de Almeida LG, Rocha VR, Magalhães M, Gerber AL, Figueira A, Cascardo JC, de Vasconcelos AR, Silva WA, Coutinho LL, Garcia D (2014) De novo transcriptome analysis of Hevea brasiliensis tissues by RNA-seq and screening for molecular markers. BMC Genomics 15:236. doi:10.1186/1471-2164-15-236

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi:10.1126/science.1178534

    Article  CAS  PubMed  Google Scholar 

  • Silva CC, Mantello CC, Campos T, Souza LM, Gonçalves PS, Souza AP (2014) Leaf-, panel- and latex-expressed sequenced tags from the rubber tree (hevea brasiliensis) under cold-stressed and suboptimal growing conditions: the development of gene-targeted functional markers for stress response. Mol Breed 34:1035–1053. doi:10.1007/s11032-014-0095-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza LM, Mantello CC, Santos MO, de Souza Gonçalves P, Souza AP (2009) Microsatellites from rubber tree (Hevea brasiliensis) for genetic diversity analysis and cross-amplification in six hevea wild species. Conserv Genet Resour 1:75–79. doi:10.1007/s12686-009-9018-7

    Article  Google Scholar 

  • Souza LM, Gazaffi R, Mantello CC, Silva CC, Garcia D et al (2013) QTL mapping of growth-related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate. PLoS One 8:e61238. doi:10.1371/journal.pone.0061238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422. doi:10.1007/s00122-002-1031-0

    CAS  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S, Sraphet S, Yoocha T, Sangsrakru D, Chanprasert J, Ngamphiw C, Jomchai N, Therawattanasuk K, Tangphatsornruang S (2011) Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Res 18:471–482. doi:10.1093/dnares/dsr034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, Graner A, Börner A (2007) Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theor Appl Genet 114:1105–1116. doi:10.1007/s00122-007-0504-6

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530. doi:10.1016/j.tibtech.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  • You FM, Huo N, Deal KR, Gu YQ, Luo M-C, McGuire PE, Dvorak J, Anderson OD (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12:59. doi:10.1186/1471-2164-12-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Fundação de Amparo a Pesquisa do Estado de São Paulo, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Computational Biology Program and Agropolis Program) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico for financial support and scholarships and a research fellowship.

Authors’ contributions

LMS performed the molecular genetic studies, helped to perform the biocomputational analysis and drafted the manuscript. GTS, CBCS and CCS performed a biocomputational analysis and drafted the manuscript. GTS, ARC, CCM and IAAA assisted in the molecular genetics studies. VLG participated in the evaluations of the molecular data and helped to draft the manuscript. APS conceived the study, participated in its design and coordination and helped to draft the manuscript. All of the authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anete Pereira de Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (BZ2 2292 kb)

Supplementary material 2 (XLSX 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, L.M., Toledo-Silva, G., Cardoso-Silva, C.B. et al. Development of single nucleotide polymorphism markers in the large and complex rubber tree genome using next-generation sequence data. Mol Breeding 36, 115 (2016). https://doi.org/10.1007/s11032-016-0534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0534-3

Keywords

Navigation