Skip to main content
Log in

Hybrid lethality caused by two complementary dominant genes in cabbage (Brassica oleracea L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Hybrid lethality, a type of postzygotic reproductive barrier, is important for species. Discovering novel hybrid lethality cases and analyzing corresponding causal genes may provide new insights into the establishment and maintenance of reproductive isolation. In this study, we observed the hybrid lethality phenomena in a cross between two cabbage inbred lines, 09-211 and 09-222. Genetic analysis revealed that the hybrid lethality was controlled by two complementary dominant genes, BolC.HL1.a and BolC.HL2.a, from 09-211 and 09-222, respectively. Further analysis indicated that the two genes conform to the Bateson-Dobzhansky-Muller model. Fine mapping of hybrid lethal genes revealed that BolC.HL1.a was located on the C01 chromosome by Indels HL132 and HL134, with a genetic distance of 0.2 and 0.1 cM, respectively. The interval distance between the two markers was 101 kb. BolC.HL2.a was fine-mapped on the C04 chromosome by HL235 and HL234 at a distance of 0.3 and 0.3 cM, respectively. The physical distance was 70 kb. These findings lay the foundation for cloning the hybrid lethality genes in the future and contribute to our understanding of the molecular and evolutionary mechanisms of hybrid lethality in Brassica oleracea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbash DA, Siino DF, Tarone AM, Roote J (2003) A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proc Natl Acad Sci USA 100(9):5302–5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a common barrier to gene-flow in plants. Nat Rev Genet 8:382–393

    Article  CAS  PubMed  Google Scholar 

  • Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a Dobzhansky–Muller-type incompatibility syndrome in plants. PLoS Biol 5(9):1962–1972

    Article  CAS  Google Scholar 

  • Brideau NJ, Flores HA, Wang J, Maheshwari S, Wang X, Barbash DA (2006) Two Dobzhansky–Muller genes interact to cause hybrid lethality in Drosophila. Science 314:1292–1295

    Article  CAS  PubMed  Google Scholar 

  • Brown MS, Menzel MY (1952) Additional evidence on the crossing behavior of Gossypium gossypioides. Bull Torrey Bot Club 79(4):285–292

    Article  Google Scholar 

  • Caldwell RM, Compton LE (1943) Complementary lethal genes in wheat: causing a progressive lethal necrosis of seedlings. J Hered 34:67–70

    Google Scholar 

  • Chae E, Bomblies K, Kim ST, Karelina D, Zaidem M, Ossowski S, Martín-Pizarro C, Laitinen RAE, Rowan BA, Tenenboim H, Lechner S, Demar M, Habring-Müller A, Lanz C, Rätsch G, Weigel D (2014) Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159(6):1341–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Zhuang M, Li K, Liu Y, Yang L, Zhang Y, Chen F, Sun P, Fang Z (2010) Development and utility of EST-SSR marker in cabbage. Acta Hortic Sin 37(2):221–228 (in Chinese)

    Google Scholar 

  • Chu YE, Oka HI (1972) The distribution and effects of genes causing F1 weakness in Oryza breviligulata and O glaberrima. Genetics 70:163–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu CG, Faris JD, Friesen TL, Xu SS (2006) Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers. Theor Appl Genet 112:1374–1381

    Article  CAS  PubMed  Google Scholar 

  • Coyne JA, Orr AH (2004) Speciation. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Deverna JW, Myers JR, Collins GB (1987) Bypassing prefertilization barriers to hybridization in Nicotiana using in vitro pollination and fertilization. Theor Appl Genet 73:665–671

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky TH (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • East EM (1935) Genetic reactions in Nicotiana. I. compatibility. Genetics 20:0403–0413

    CAS  Google Scholar 

  • Hollingshead LA (1930) A lethal factor in Crepis effective only in an interspecific hybrid. Genetics 15:114–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichitani K, Fukuta Y, Taura S, Sato M (2001) Chromosomal location of Hwc2, one of the complementary hybrid weakness genes, in rice. Plant Breed 120:523–525

    Article  CAS  Google Scholar 

  • Ichitani K, Namigoshi K, Sato M, Taura S, Aoki M, Matsumoto Y, Saitou T, Marubashi W, Kuboyama T (2007) Fine mapping and allelic dosage effect of Hwc1, a complementary hybrid weakness gene in rice. Theor Appl Genet 114:1407–1415

    Article  CAS  PubMed  Google Scholar 

  • Inoue E, Sakuma F, Kasumi M, Hara H, Tsukihashi T (2003) Effect of high-temperature on suppression of the lethality exhibited in the intergeneric hybrid between Japanese pear (Pyrus pyrifolia Nakai) and apple (Malus × domestica Borkh.). Sci Hortic 98:385–396

    Article  Google Scholar 

  • Jeuken MJW, Zhang NW, Mchale LK, Pelgrom K, den Boer E, Lindhout P, Michelmore RW, Visser RG, Niks RE (2009) Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell 21:3368–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen

  • Kostoff D (1930) Ontogeny, genetics and cytology of Nicotiana hybrids. Genetica 12:33–139

    Article  Google Scholar 

  • Liu R, Meng J (2003) Map draw: a Microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 25:317–321 (in Chinese)

    PubMed  Google Scholar 

  • Liu B, Wang Y, Zhai W, Deng J, Wang H, Cui Y, Cheng F, Wang X, Wu J (2013) Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theor Appl Genet 126:231–239

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. doi:10.1038/ncomms4930

    Google Scholar 

  • Lv H, Wang Q, Zhang Y, Yang L, Fang Z, Wang X, Liu Y, Zhuang M, Lin Y, Yu H, Liu B (2014) Linkage map construction using InDel and SSR markers and QTL analysis of heading traits in cabbage. Mol Breed 34:87–98

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller HJ (1942) Isolating mechanisms, evolution, and temperature. Biol Symp 6:71–124

    Google Scholar 

  • Murray HG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa K, Mori T, Takami N, Furuta Y (1974) Mapping of progressive necrosis genes, Ne1 and Ne2 of common wheat by the telocentric method. Japan J Breed 24:277–281

    Article  Google Scholar 

  • Orr HA (2005) The genetic theory of adaptation: a brief history. Nat Rev Genet 6:119–127

    Article  CAS  PubMed  Google Scholar 

  • Orr HA, Presgraves DC (2000) Speciation by postzygotic isolation: forces, genes and molecules. BioEssays 22:1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard L, King G (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips LL (1977) Interspecific incompatibility in gossypium. IV. Temperature-conditional lethality in hybrids of G. klotzschianum. Bot Soc Am 64:914–915

    Article  Google Scholar 

  • Phillips LL, Merritt JF (1972) Interspecific Incompatibility in Gossypium. I. Stem histogenesis of G. hirsutum × G. gossypioides. Am J Bot 59:203–208

    Article  Google Scholar 

  • Presgraves DC, Lakshmi B, Abmayr SM, Allen OH (2003) Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423:715–719

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi M, Uhlén M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Ichitani K, Suzuki T, Marubashi W, Kuboyama T (2007) Developmental observation and high temperature rescue from hybrid weakness in a cross between Japanese rice cultivars and Peruvian rice cultivar ‘Jamaica’. Breed Sci 57:281–288

    Article  Google Scholar 

  • SAS Institute (2001) SAS/SYSTAT user’s guide. Version 8. SAS Inst Inc, Cary

  • Sato YI, Hayashi K (1983) Distribution of the complementary genes causing F1 weakness in the common rice and its wild relatives I. L-2-a gene in Asian native cultivars. Jpn J Genet 58:411–418

    Article  Google Scholar 

  • Saunders AR (1952) Complementary lethal genes in the cowpea. S Afr J Sci 48:195–197

    Google Scholar 

  • Sawant AC (1956) Semilethal complementary factors in a tomato species hybrid. Evolution 10:93–96

    Article  Google Scholar 

  • Sax K (1921) Sterility in wheat hybrids. I. Sterility relations and endosperm development. Genetics 6:399–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sears ER (1944) Inviability of intergeneric hybrids involving Triticum monococcum and T. aegilopoides. Genetics 29:113–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silow RA (1941) The comparative genetics of Gossypium anomalum and the cultivated Asiatic cottons. J Genet 42:259–358

    Article  Google Scholar 

  • Song L, Guo WZ, Zhang TZ (2009) Interaction of novel Dobzhansky–Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv. Coastland R4–4. Theor Appl Genet 119:33–41

    Article  CAS  PubMed  Google Scholar 

  • Tezuka T (2012) Hybrid lethality in the genus Nicotiana. Botany Intech, pp 191–210

  • Tezuka T, Marubashi W (2006) Hybrid lethality in interspecific hybrids between Nicotiana tabacum and N. suaveolens: evidence that the Q chromosome causes hybrid lethality based on Q chromosome-specific DNA markers. Theor Appl Genet 112:1172–1178

    Article  CAS  PubMed  Google Scholar 

  • Tsunewaki K (1970) Necrosis and chlorosis genes in common wheat and its ancestral species. Seiken Ziho 22:67–75

    Google Scholar 

  • Wiebe GA (1934) Complementary factors in barley giving a lethal progeny. J Hered 25:272–274

    Google Scholar 

  • Yamada T, Marubashi W (2003) Overproduced ethylene causes programmed cell death leading to temperature-sensitive lethality in hybrid seedlings from the cross Nicotiana suaveolens × N. tabacum. Planta 217:690–698

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Marubashi W, Niwa M (1999) Detection of four lethality types in interspecific crosses among Nicotiana species through the use of three rescue methods for lethality. Breed Sci 49:203–210

    Article  Google Scholar 

  • Yamada T, Marubashi W, Niwa M (2000) Apoptotic cell death induces temperature-sensitive lethality in hybrid seedlings and calli derived from the cross of Nicotiana suaveolens × N. tabacum. Planta 211:614–622

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto E, Takashi T, Morinaka Y, Lin SY, Wu JZ, Matsumoto T, Kitano H, Matsuoka M, Ashikari M (2010) Gain of deleterious function causes an autoimmune response and Bateson–Dobzhansky–Muller incompatibility in rice. Mol Genet Genomics 283:305–315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xueyuan Cao at St. Jude Children’s Research Hospital, USA, for his comments and suggestions on writing the manuscript. This work was financially supported by grants from the National Natural Science Foundation of China (31372071, 31572139), the earmarked fund for the Modern Agro-Industry Technology Research System, China (nycytx-35-gw01). This work was performed in the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu Zhuang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Xue, Yq., Liu, Js. et al. Hybrid lethality caused by two complementary dominant genes in cabbage (Brassica oleracea L.). Mol Breeding 36, 73 (2016). https://doi.org/10.1007/s11032-016-0498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0498-3

Keywords

Navigation