Skip to main content
Log in

Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A set of introgression lines (ILs) containing chromosomal segments from O. rufipogon (IRGC 105491), a wild relative of O. sativa, in the genetic background of an elite US variety, cv. Jefferson, was developed to confirm the performance of six yield-enhancing quantitative trait loci (QTL). Fifty BC3F3 ILs containing homozygous O. rufipogon introgressions at each of the target QTL regions, and as few background introgressions as possible, were selected for evaluation of yield and 14 yield-related traits in field studies conducted over 2 years at four locations in the southern USA. Performance of the IL families was compared with three commercial inbreds and one hybrid variety. IL families carrying introgressions from the low-yielding wild parent at the QTL yld2.1 and yld6.1 yielded 27.7 and 26.1 % more than Jefferson, respectively. IL yld2A, which possesses yld2.1, also performed well under alternate wetting and drying conditions in two field locations. After the first year of field trials, 10 of the top-performing BC3F4 families, representing five of the QTL targets, were genotyped with an Illumina 1,536 assay to define the size and location of the wild introgressions. BC3F4 families with the fewest background introgressions were backcrossed to Jefferson and selfed. The resulting BC4F2 families were screened with targeted single nucleotide polymorphism assays to identify individuals carrying homozygous introgressions across the target QTL. Twelve ILs, representing each of the six QTL targets, have been submitted to the Genetic Stocks Oryza Collection for studies on transgressive variation and as interspecific pre-breeding lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashikari M, Sakakibara H, Lin H, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M, Ashikari M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47(2):507–516. doi:10.2135/cropsci2006.07.0495

    Article  Google Scholar 

  • Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Breeding upland rice for drought resistance. J Sci Food Agric 88(6):927–939. doi:10.1002/jsfa.3153

    Article  CAS  Google Scholar 

  • Bernier J, Kumar A, Venuprasad R, Spaner D, Verulkar S, Mandal NP, Sinha PK, Peeraju P, Dongre PR, Mahto RN, Atlin G (2009a) Characterization of the effect of a QTL for drought resistance in rice, qtl12.1, over a range of environments in the Philippines and eastern India. Euphytica 166(2):207–217. doi:10.1007/s10681-008-9826-y

    Article  Google Scholar 

  • Bernier J, Serraj R, Kumar A, Venuprasad R, Impa S, Gowda RPV, Oane R, Spaner D, Atlin G (2009b) The large-effect drought-resistance QTL qtl12.1 increases water uptake in upland rice. Field Crops Res 110(2):139–146. doi:10.1016/j.fcr.2008.07.010

    Article  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Sofia da Silva H, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718. doi:10.1126/science.1174276

    Article  PubMed  CAS  Google Scholar 

  • Chapman NH, Bonnet J, Grivet L, Lynn J, Graham N, Smith R, Sun G, Walley PG, Poole M, Causse M, King GJ, Baxter C, Seymour GB (2012) High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol 159(4):1644–1657. doi:10.1104/pp.112.200634

    Article  PubMed  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc Lond B Biol Sci 363(1491):557–572. doi:10.1098/rstb.2007.2170

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Fukuoka S, Nonoue Y, Yano M (2010) Germplasm enhancement by developing advanced plant materials from diverse rice accessions. Breed Sci 60(5):509–517

    Article  Google Scholar 

  • Fulton T, Chunwongse J, Tanksley S (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13(3):207–209. doi:10.1007/bf02670897

    Article  CAS  Google Scholar 

  • Gur A, Semel Y, Osorio S, Friedmann M, Seekh S, Ghareeb B, Mohammad A, Pleban T, Gera G, Fernie A, Zamir D (2011) Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theor Appl Genet 122(2):405–420. doi:10.1007/s00122-010-1456-9

    Article  PubMed  Google Scholar 

  • IRGSP (International Rice Genome Sequencing Project) (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Krystkowiak K, Adamski T, Surma M, Kaczmarek Z (2009) Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat Triticum aestivum L. Euphytica 165(3):419–434. doi:10.1007/s10681-008-9761-y

    Article  Google Scholar 

  • Kumar A, Verulkar S, Dixit S, Chauhan B, Bernier J, Venuprasad R, Zhao D, Shrivastava MN (2009) Yield and yield-attributing traits of rice (Oryza sativa L.) under lowland drought and suitability of early vigor as a selection criterion. Field Crops Res 114(1):99–107. doi:10.1016/j.fcr.2009.07.010

    Article  Google Scholar 

  • Kumar J, Mir RR, Kumar N, Kumar A, Mohan A, Prabhu KV, Balyan HS, Gupta PK (2010) Marker-assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breed 129(6):617–621. doi:10.1111/j.1439-0523.2009.01758.x

    Article  CAS  Google Scholar 

  • Kumar J, Jaiswal V, Kumar A, Kumar N, Mir RR, Kumar S, Dhariwal R, Tyagi S, Khandelwal M, Prabhu KV, Prasad R, Balyan HS, Gupta PK (2011) Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crops Res 123(3):226–233. doi:10.1016/j.fcr.2011.05.013

    Article  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43(12):1266–1269. http://www.nature.com/ng/journal/v43/n12/abs/ng.977.html#supplementary-information

    Google Scholar 

  • Little RR, Hilder GB, Dawson EH (1958) Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem 35:111–126

    Google Scholar 

  • Liu T, Shao D, Kovi M, Xing Y (2010) Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice Oryza sativa L. Theor Appl Genet 120(5):933–942. doi:10.1007/s00122-009-1222-z

    Article  PubMed  CAS  Google Scholar 

  • Lu HY (1995) PC-SAS program for estimating Huhn’s nonparametric stability statistics. Agron J 87(5):888–891

    Article  Google Scholar 

  • Maas L, McClung A, McCouch S (2010) Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet 120(5):895–908

    Article  PubMed  CAS  Google Scholar 

  • McClung AM, Marchetti MA, Webb BD, Bollich CN (1997) Registration of “Jefferson” rice. Crop Sci 37:629–630

    Article  Google Scholar 

  • McCouch S, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan L, Ahn S-N (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339

    Article  CAS  Google Scholar 

  • McCouch SR, Zhao K, Wright M, Tung C-W, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML, McClung A, Eizenga G, Bustamante C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60(5):524–535

    Article  Google Scholar 

  • Miedaner T, Wilde F, Korzun V, Ebmeyer E, Schmolke M, Hartl L, Schön C (2009) Marker selection for Fusarium head blight resistance based on quantitative trait loci (QTL) from two European sources compared to phenotypic selection in winter wheat. Euphytica 166(2):219–227. doi:10.1007/s10681-008-9832-0

    Article  CAS  Google Scholar 

  • Moncada M, Martínez C, Tohme J, Guimaraes E, Chatel M, Borrero J, Gauch H, McCouch S (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • Nelson J, McClung A, Fjellstrom R, Moldenhauer K, Boza E, Jodari F, Oard J, Linscombe S, Scheffler B, Yeater K (2011) Mapping QTL main and interaction influences on milling quality in elite US rice germplasm. Theor Appl Genet 122(2):291–309. doi:10.1007/s00122-010-1445-z

    Article  PubMed  CAS  Google Scholar 

  • Oeth P, Beaulieu M, Park C, Kosman D, del Mistro G, van den Boom D, Jurinke C (2005) iPLEX™ assay: increased plexing efficiency and flexibility for MassARRAY system through single base primer extension with mass-modified terminators. http://www.sequenom.com/files/genetic-analysis-files/qge-application-pdfs/iplex_application_note

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108(17):6893–6898. doi:10.1073/pnas.1010894108

    Article  PubMed  CAS  Google Scholar 

  • Schmalenbach I, Léon J, Pillen K (2009) Identification and verification for agronomic traits using wild barley introgression lines. Theor Appl Genet 118(3):483–497. doi:10.1007/s00122-008-0915-z

    Article  PubMed  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40(8):1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Stupar R (2010) Into the wild: the soybean genome meets its undomesticated relative. Proc Natl Acad Sci USA 107(51):21947–21948. doi:10.1073/pnas.1016809108

    Article  PubMed  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107(3):479–493. doi:10.1007/s00122-003-1270-8

    Article  PubMed  CAS  Google Scholar 

  • Thomson MJ, Ismail AM, McCouch SR, Mackill DJ (2011) Marker assisted breeding. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht, pp 451–469. doi:10.1093/aob/mcr053

  • Uga Y (2012) Gene Dro1 controlling deep-rooted characteristics of plant and utilization of same. Patent # US 20120317678 A1 www.google.com/patents/US20120317678

  • Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62(8):2485–2494. doi:10.1093/jxb/erq429

    Article  PubMed  CAS  Google Scholar 

  • Venuprasad R, Dalid C, Del Valle M, Zhao D, Espiritu M, Sta Cruz M, Amante M, Kumar A, Atlin G (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120(1):177–190. doi:10.1007/s00122-009-1168-1

    Article  PubMed  Google Scholar 

  • Venuprasad R, Impa SM, Gowda RPV, Atlin GN, Serraj R (2011) Rice near-isogenic-lines (NILs) contrasting for grain yield under lowland drought stress. Field Crops Res 123(1):38–46. doi:10.1016/j.fcr.2011.04.009

    Article  Google Scholar 

  • Venuprasad R, Bool M, Quiatchon L, Atlin G (2012) A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor Appl Genet 124(2):323–332. doi:10.1007/s00122-011-1707-4

    Article  PubMed  CAS  Google Scholar 

  • Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18(12):1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Zhuan W, Xiong Y, Yang Y, Deng H, Deng Q (2010) Breeding of new hybrid rice combination Y Liangyou 7 with high yield and good quality by introducing yield-increasing QTLs of wild rice. [J] Hybrid Rice 25(4):20–22 (In Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJSD201004008.htm

    Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn S, Yuan L, Tanksley S, McCouch S (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    PubMed  CAS  Google Scholar 

  • Xie X, Jin F, Song M-H, Suh J-P, Hwang H-G, Kim Y-G, McCouch S, Ahn S-N (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116(5):613–622. doi:10.1007/s00122-007-0695-x

    Article  PubMed  Google Scholar 

  • Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35(1):145–153

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77(1):95–101. doi:10.1007/bf00292322

    Article  Google Scholar 

  • Zhao DL, Atlin GN, Amante M, Cruz MTS, Kumar A (2010) Developing aerobic rice cultivars for water-short irrigated and drought-prone rainfed areas in the tropics. Crop Sci 50(6):2268–2276. doi:10.2135/cropsci2010.10.0028

    Article  Google Scholar 

  • Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Paul Doran, Hema Liyanage and Bob Shiels from Sequenom, Inc., for technical assistance; Shannon Moon and RiceTec, Inc., for collection of field data in Jonesboro and Alvin; Tony Beaty, Laduska Simpson, Sarah Hendrix, Bill Luebke and Curtis Kerns for yield trials at Stuttgart; Jodie Cammack, Kip Landry, Carl Henry, Piper Roberts and Jason Bonnette for yield trials at Beaumont; WenGui Yan and Tiffany Sookaserm for sheath blight and straighthead evaluations; Gen Onishi and Sandy Harrington for help with crossing and managing populations at Cornell University; collaborators in the Uniform Regional Rice Nursery for agronomic, grain quality, genetic markers, and biotic and abiotic stress data; and Cheryl Utter for formatting the manuscript. This study is funded by NSF-TV Plant Genome Research Program Award #0606461 and #1026555 and USDA-NIFA Award #2009-65300-05698.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan R. McCouch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, I., Kimball, J.A., Conway, B. et al. Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice. Mol Breeding 32, 101–120 (2013). https://doi.org/10.1007/s11032-013-9855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9855-7

Keywords

Navigation