Skip to main content
Log in

Association of allelic variation in two NPR1-like genes with Fusarium head blight resistance in wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

An Erratum to this article was published on 18 April 2014

Abstract

Fusarium head blight (FHB) is a destructive disease of wheat and barley. In wheat it is mainly caused by the fungal pathogens Fusarium graminearum and Fusarium culmorum. We report the identification and evaluation of candidate genes for quantitative FHB resistance. These genes showed altered expression levels in the moderately resistant winter wheat genotypes Capo and SVP72017 after inoculation with F. graminearum. Amongst others, a NPR1-like gene was identified. Sequence analysis of this gene fragment revealed a high level of variation between the parents of a doubled haploid population. Single nucleotide polymorphism and polymerase chain reaction markers were developed and two homoeologous genes were mapped on the long arms of chromosomes 2A and 2D, respectively. Markers for both genes had significant effects on FHB resistance in a diverse collection of 178 European winter wheat cultivars evaluated in multi-environmental field trials after spray inoculation with F. culmorum. These results revealed that allelic variation in two homoeologous NPR1-like genes is associated with FHB resistance in European winter wheat. Markers for these genes might therefore be used for marker-assisted breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Beckers GJM, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P (2007) Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars. Funct Integr Genomics 7:69–77

    Article  CAS  PubMed  Google Scholar 

  • Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P (2000) Resistance to Fusarium head blight in winter wheat: heritability and trait associations. Crop Sci 40:1012–1018

    Article  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Chapman NH, Burt C, Nicholson P (2009) The identification of candidate genes associated with Pch2 eyespot resistance in wheat using cDNA-AFLP. Theor Appl Genet 118:1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Diethelm M, Rhiel M, Wagner C, Mikolajewski S, Groth J, Hartl L, Friedt W, Schweizer G (2012) Gene expression analysis of four WIR1-like genes in floret tissues of European winter wheat after challenge with G. zeae. Euphytica 186:103–114

    Article  CAS  Google Scholar 

  • Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z (2011) Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One 6:e19008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao CS, Kou X-J, Li HP, Zhang JB, Saad ASI, Liao XC (2013) Inverse effects of Arabidopsis NPR1 gene on fusarium seedling blight and fusarium head blight in transgenic wheat. Plant Pathol 62:383–392

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gottwald S, Samans B, Lück S, Fried W (2012) Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? BMC Genomics 13:369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against F. graminearum. PLoS One 7:e40695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartl L, Mohler V, Zeller FJ, Hsam SLK, Schweizer G (1999) Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat. Genome 42:322–329

    Article  CAS  Google Scholar 

  • Hill-Ambroz K, Webb CA, Matthews AR, Li W, Gill BS, Fellers JP (2006) Expression analysis and physical mapping of a cDNA library of Fusarium head blight infected wheat spikes. Plant Genome 1:15–26

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Holzapfel J, Voss HH, Miedaner T, Korzun V, Häberle J, Schweizer G, Mohler V, Zimmermann G, Hartl L (2008) Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor Appl Genet 117:1119–1128

    Article  PubMed  Google Scholar 

  • Kang Z, Buchenauer H (1999) Immunocytochemical localization of Fusarium toxins in infected wheat spikes by Fusarium culmorum. Physiol Mol Plant Pathol 55:275–288

    Article  CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000) Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol Res 104:1083–1093

    Article  Google Scholar 

  • Kong L, Ohm HW, Anderson JM (2007) Expression analysis of defense-related genes in wheat in response to infection by Fusarium graminearum. Genome 50:1038–1048

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterházy A, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of A. thaliana NPR1. Mol Plant Microbe Interact 19:123–129

    Article  CAS  PubMed  Google Scholar 

  • Makandar R, Nalam VJ, Lee H, Trick HN, Shah J (2012) Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Mol Plant Microbe Interact 25:431–439

    Article  CAS  PubMed  Google Scholar 

  • Miedaner T, Gang G, Geiger HH (1996) Quantitative-genetic basis of aggressiveness of 42 isolates of Fusarium culmorum for winter rye head blight. Plant Dis 80:500–504

    Article  Google Scholar 

  • Mohler V, Schmolke M, Paladey E, Seling S, Hartl L (2012) Association analysis of puorindoline-D1 and of puorindoline b-2 loci with 13 quality traits in European winter wheat (Triticum aestivum L.). J Cereal Sci 56:623–628

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 27:47905–47914

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi PF, Johnston A, Balcerzak M, Rocheleau H, Harris LJ, Long WYM, Zheng YL, Quellet T (2012) Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Fungal Biol 116:413–426

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0. http://www.R-project.org/

  • Roeder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    Article  CAS  PubMed  Google Scholar 

  • Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F, Lemmens M, Muehlbauer GJ, Adam G (2010) Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol Plant Microbe Interact 23:977–986

    Article  CAS  PubMed  Google Scholar 

  • Schweiger W, Steiner B, Ametz C, Siegwart G, Wiesenberger G, Berthiller F, Lemmens M, Jia H, Adam G, Muehlbauer GJ, Kreil DP, Buerstmayr H (2013) Transcriptomic characterization of two major Fusarium resistance quantitative loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes. Mol Plant Pathol 14(8):772–785. doi:10.1111/mpp.12048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sears ER (1966) Nulli-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics, a suppl. to heredity. Oliver and Boyd, Edinburgh, pp 29–45

    Chapter  Google Scholar 

  • Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46:431–437

    Article  CAS  PubMed  Google Scholar 

  • Steiner B, Kurz H, Lemmens M, Buerstmayr H (2009) Differential gene expression of related wheat lines with contrasting levels of head blight resistance effect Fusarium graminearum inoculation. Theor Appl Genet 118:753–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) Joinmap® 3.0. Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Walter S, Nicholson P, Doohan F (2010) Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tang C, Li Y, Wang C, Liu B, Qu Z, Zhao J, Han Q, Huang L, Chen X, Kang Z (2009) cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genomics 10:289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J, Huang X, Wei G, Han Q, Huang L, Kang Z (2010) Differential gene expression in compatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol 10:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:30031–30039

    Article  Google Scholar 

  • Xiao J, Jin X, Jia X, Wang H, Cao A, Weiping Z, Pei H, Xue Z, He L, Chen Q, Wang X (2013) Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics 14:197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuang Y, Gala A, Yen Y (2013) Identification of functional genetic components of major Fusarium head blight resistance quantitative trait loci in wheat cultivar Sumai3. Mol Plant Microbe Interact 26:442–450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank S. Wüllner, S. Schmidt, J. Brandlmeier, A. Bund and the staff of the departments of Genome Analysis and Wheat Breeding of the Bavarian State Research Centre for excellent technical assistance. We thank V. Mohler, B. Büttner and T. Albrecht from the plant breeding department of the Bavarian State Research Centre for Agriculture for helpful discussions and critical reading of the manuscript. We are grateful to M. Lemmens and B. Steiner from the IFA Tulln, Austria for kindly providing the F. graminearum inoculum and for sharing their protocols and experience in inoculation and sampling technique. We acknowledge J. Schondelmaier from the Saaten-Union Biotec GmbH for performing the SSR marker analysis of the Sngh3559//Capo/SVP72017 mapping population. We also thank Saatzucht Breun GmbH & Co. KG (Herzogenaurach, Germany), Deutsche Saatveredelung AG (Leutewitz, Germany), Prof. H. Buerstmeyr from the Department for Agrobiotechnology Tulln (Austria) and W. von Borries-Eckendorf GmbH & Co. KG (Leopoldshöhe, Germany) for performing the field trials. Results presented here were obtained from a project funded by the Deutsche Forschungsgemeinschaft DFG (Schw 1201/1-2) and of the GABI-Canada (CGAT) cooperative project: Reducing Fusarium toxins in wheat through genomics (Subprojects A and C no. 0313711A and C), which was funded by the German Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Diethelm.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diethelm, M., Schmolke, M., Groth, J. et al. Association of allelic variation in two NPR1-like genes with Fusarium head blight resistance in wheat. Mol Breeding 34, 31–43 (2014). https://doi.org/10.1007/s11032-013-0010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-0010-2

Keywords

Navigation