Skip to main content
Log in

Discovery and use of single nucleotide polymorphic (SNP) markers in Jatropha curcas L.

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Various programs for genetic improvement in oil yield of the biofuel plant Jatropha curcas L. are currently in progress worldwide. In order to develop strategies for genetic improvement, it is important to estimate the degree of diversity at the genetic level among various genotypes of J. curcas. High-throughput sequencing of complexity-reduced nuclear genomic DNA of J. curcas coupled with computational analysis discovered 2,482 informative single nucleotide polymorphisms (SNPs). Genotyping of selective SNPs among 148 global collections of J. curcas lines and further diversity analysis through NTSYS-pc, DARwin and Structure 2.0 software revealed that a narrow level of genetic diversity existed among the indigenous genotypes as compared to the exotic genotypes of J. curcas. The level of marker informativeness along with distance-based and Bayesian clustering revealed grouping of the accession from Togo (Africa) with various Indian accessions at K = 4 and K = 5 values (where K represents the number of populations). The diverse accessions identified in the study will be of further use in genetic improvement of J. curcas through quantitative trait loci and association mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antolin G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramirez AI (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Technol 83:111–114

    Article  PubMed  CAS  Google Scholar 

  • Barker G, Batley J, O’Sullivan H, Edwards KJ, Edwards D (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19:421–422

    Article  PubMed  CAS  Google Scholar 

  • Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    Article  PubMed  CAS  Google Scholar 

  • Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237

    Article  CAS  Google Scholar 

  • Bondioli P, Gasparoli A, Della Bella L, Tagliabue S, Toso G (2003) Biodiesel stability under commercial storage conditions over one year. Eur J Lipid Sci Technol 105:735–741

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617

    Article  CAS  Google Scholar 

  • Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 52:903–909

    Article  CAS  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Coryell VH, Jessen H, Schupp JM, Webb D, Keim P (1999) Allele-specific hybridization markers for soybean. Theor Appl Genet 98:690–696

    Article  CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  PubMed  CAS  Google Scholar 

  • Dehgan B (1984) Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). Syst Bot 9:467–478

    Article  Google Scholar 

  • Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492

    Article  PubMed  CAS  Google Scholar 

  • El Bassam N (1998) Energy plant species: their use and impact on environment and development. James and James (Science Publishers)

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29:12–24

    Article  Google Scholar 

  • Germano J, Klein AS (1999) Species-specific nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P. mariana and P. rubens. Theor Appl Genet 99:37–49

    Article  CAS  Google Scholar 

  • Heller J (1996) Physic Nut. Jatropha curcas L. Promoting the Conservation and use of underutilized and neglected crops. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Huang W, Marth G (2008) EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res 18:1538–1543

    Article  PubMed  CAS  Google Scholar 

  • Kaushik N, Kumar K, Kumar S, Roy S (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 31:497–502

    Article  CAS  Google Scholar 

  • Kumar RS, Parthiban KT, Govinda Rao M (2009) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol Biol Rep 36:1951–1956

    Article  Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Muminovic J, Melchinger AE, Luubberstedt T (2004) Genetic diversity in cornsalad (Valerianella locusta) and related species as determined by AFLP markers. Plant Breed 123:460–466

    Article  CAS  Google Scholar 

  • Openshaw K (2000) A review of Jatropha curcas L.: an oil plant of unfulfilled promise. Biomass Bioenergy 19:1–15

    Article  Google Scholar 

  • Pashley CH, Ellis JR, McCauley DE, Burke JM (2006) EST databases as a source for molecular markers: lessons from Helianthus. J Hered 97:381–388

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphism in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Ram SG, Parthiban KT, Kumar RS, Thiruvengadam V, Paramathma M (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 55:803–809

    Article  CAS  Google Scholar 

  • Rohde K, Fuerst R (2001) Haplotyping and estimation of haplotype frequencies for closely linked biallelic multilocus genetic phenotypes including nuclear family information. Hum Mut 17:289–295

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ (1993) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.11. Applied Biostatistics, Setauket, New York

    Google Scholar 

  • Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science (Washington) 281:363–365

    Article  CAS  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunga S, Fukui K (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Singh S, Mishra SP, Bhatia SK (2010) Molecular characterization of genetic diversity in Jatropha curcas L. Gene, Genomes Genomics 4:1–8

    CAS  Google Scholar 

  • Tassell CPV, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Meth 5:247–252

    Article  Google Scholar 

  • Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA, Devi P, Varshney RK (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513

    Article  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Anderson LK, Stack SM, Doebley J, Gaut BS (2002) Patterns of diversity and recombination along chromosome 1 of Maize (Zea mays ssp. mays L.). Genetics 162:1401–1413

    PubMed  CAS  Google Scholar 

  • Tsaftaris AS, Polidoros AN (1999) DNA methylation and plant breeding. Plant Breed Rev 18:87–176

    Google Scholar 

  • Varshney RK, Salem KFM, Baum M, Roder MS, Graner A, Börner A (2008) SSR and SNP diversity in a barley germplasm collection. Plant Genet Resour 6:167–174

    Article  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associate Inc., Sunderlands

    Google Scholar 

  • Wen MF, Wang HY, Xia ZQ, Zou ML, Lu C, Wang WQ (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha Curcas L. BMC Res Notes 3:42

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported under a supra-institutional programme of the Council of Scientific and Industrial Research (CSIR), Government of India. The Director, NBRI, is acknowledged for providing basic infrastructure facilities for carrying out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Sekhar Mohanty.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, P., Idris, A., Mantri, S. et al. Discovery and use of single nucleotide polymorphic (SNP) markers in Jatropha curcas L.. Mol Breeding 30, 1325–1335 (2012). https://doi.org/10.1007/s11032-012-9719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9719-6

Keywords

Navigation