Skip to main content
Log in

Genetic linkage maps of white birches (Betula platyphylla Suk. and B. pendula Roth) based on RAPD and AFLP markers

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A pseudo-testcross mapping strategy was used in combination with the random amplified polymorphism DNA (RAPD) and amplified fragment length polymorphism (AFLP) genotyping methods to develop two moderately dense genetic linkage maps for Betula platyphylla Suk. (Asian white birch) and B. pendula Roth (European white birch). Eighty F1 progenies were screened with 291 RAPD markers and 451 AFLP markers. We selected 230 RAPD and 362 AFLP markers with 1:1 segregation and used them for constructing the parent-specific linkage maps. The resultant map for B. platyphylla was composed of 226 markers in 24 linkage groups (LGs), and spanned 2864.5 cM with an average of 14.3 cM between adjacent markers. The linkage map for B. pendula was composed of 226 markers in 23 LGs, covering 2489.7 cM. The average map distance between adjacent markers was 13.1 cM. Clustering of AFLP markers was observed on several LGs. The availability of these white birch linkage maps will contribute to the molecular genetics and the implementation of marker-assisted selection in these important forest species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso-Blanco C, Peeters AJM, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper MTR (1998) Development of an AFLP-based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271

    Article  PubMed  CAS  Google Scholar 

  • Arcade A, Anselin F, Faivre RP, Lesage MC, Pques LE, Prat D (2000) Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theor Appl Genet 100:299–307

    Article  CAS  Google Scholar 

  • Barreneche T, Bodenes C, Lexer C, Trontin JF, Fluch S, Streiff R, Plomion C, Roussel G, Steinkellner H, Burg K, Favre JM, Glossl J, Kremer A (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5 S rRNA markers. Theor Appl Genet 97:1090–1103

    Article  CAS  Google Scholar 

  • Bradshaw HD, Stettler RF (1995) Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form and phenology traits in a forest tree. Genetics 139:963–973

    PubMed  CAS  Google Scholar 

  • Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, Van Slycken J, Van Mantagu M, Boerjan W (2001) Dense genetic linkage maps of three poplar species (Populus deltoids, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809

    PubMed  CAS  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    PubMed  CAS  Google Scholar 

  • Costa P, Pot D, Bubos C, Frigerio JM, Pionneau C, Bodenes C, Bertocchi E, Cervera MT, Remington DL, Plomion C (2000) A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theor Appl Genet 100:39–48

    Article  CAS  Google Scholar 

  • Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009) Association genetics of coastal douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182:1289–1302

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1995) Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Theor Appl Genet 90:933–947

    Article  CAS  Google Scholar 

  • Grime JP, Mowforth MA (1982) Variation in genome size—an ecological interpretation. Nature 299:151–153

    Article  Google Scholar 

  • Isabel N, Beaulieu J, Theriault P, Bousquet J (1999) Direct evidence for biased gene diversity estimates from dominant amplified polymorphic DNA (RAPD) fingerprints. Mol Ecol 8:477–483

    Article  Google Scholar 

  • Jiang J, Yang CP, Liu GF, Liu YX, Ren XQ (2001) Analysis of genetic variation within and among Betula platyphylla provenances and provenance division using RAPD markers. Bull Bot Res 21:126–130

    Google Scholar 

  • Jiang J, Yang CP, Liu GF, Liu YX, Ren XQ (2002) Analysis of genetic relationship of Betula among species using RAPD marker. Sci Silv Sin 38:154–156

    CAS  Google Scholar 

  • Keim P, Schupp JM, Travis SE, Clayton K, Zhu T, Shi L, Ferreria A, Webb DM (1997) A high-density soybean genetic map based on AFLP markers. Crop Sci 37:537–543

    Article  CAS  Google Scholar 

  • Kondo T, Terada K, Hayashi E, Kuramoto N, Okamura M, Kawasaki H (2001) RAPD markers linked to a gene for resistance to pine needle gall midge in Japanese black pine (Pinus thunbergii). Theor Appl Genet 102:871–875

    Article  Google Scholar 

  • Kulju KKM, Pekkinen M, Varvio S (2004) Twenty-three microsatellite primer pairs for Betula pendula (Betulaceae). Mol Ecol Notes 4:471–473

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Linconln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li P, Fang GP, Sun CZ (1995) Wood characteristics of pulp wood III. Chem Ind For Prod 15(Suppl):13–18

    Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25:317–321

    Google Scholar 

  • Marques CM, Araujo JA, Ferreira JG, Whetten R, O’Malley DM, Liu BH, Sederoff R (1998) AFLP genetic maps of Eucalyptus globulus and E. tereticornis. Theor Appl Genet 96:727–737

    Article  CAS  Google Scholar 

  • Mutikainen P, Walls M, Ovaska J, Keinanen M, Julkunen-Tiitto R, Vapaavuori E (2000) Herbivore resistance in Betula pendula: effect of fertilisation, defoliation and plant genotype. Ecology 81:49–65

    Google Scholar 

  • Myburg AA, Remington DL, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. BioTechniques 30:348–357

    PubMed  CAS  Google Scholar 

  • Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genom 9:21

    Article  Google Scholar 

  • Pekkinen M, Varvio S, Kulju KKM, Kärkkäinen H, Smolander S, Viherä-Aarnio A, Koski V, Sillanpää MJ (2005) Linkage map of birch, Betula pendula Roth, based on microsatellites and amplified fragment length polymorphisms. Genome 48:619–625

    Article  PubMed  CAS  Google Scholar 

  • Plomion C, Durel CE, O’Malley D (1996) Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet 93:849–858

    Article  CAS  Google Scholar 

  • Tammisola J, Varhimo A, Velling P, Vihera-Aarnio A, Kauppinen V, Sundouist J, Lapinjoki S (1995) Variation in the wood and pulping properties of European white birch. Paper and Timber 77:641–648

    Google Scholar 

  • Troggio M, Kubisiak TL, Bucci G, Menozzi P (2001) Randomly amplified polymorphic DNA linkage relationships in different Norway spruce populations. Can J For Res 31:1456–1461

    Article  CAS  Google Scholar 

  • Tsarouhas V, Gullberg U, Lagercrantz U (2002) An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor Appl Genet 105:277–288

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleekers M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wei ZG, Yang CP, Pan H (2006) Identification of molecular markers associated with birch fiber length trait by multiple regression analysis. Mol Plant Breed 6:835–840

    Google Scholar 

  • Wu B, Lian C, Hogetsu T (2003) Development of microsatellite markers in white birch (Betula platyphylla var. japonica). Mol Ecol Notes 2:413–415

    Article  Google Scholar 

  • Yin TM, Huang MR, Zhu LH (1996) Using dominant markers and F1 pedigree to construct genetic linkage map in forest trees. Prog Biotechnol 16:12–16

    Google Scholar 

  • Yin TM, Huang MR, Wang MX, Zhu LH, He P, Zhai WX (1999) RAPD linkage map in a Populus adenopoda × P. alba F1 family. Acta Bot Sin 41:956–961

    CAS  Google Scholar 

  • Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–790

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingbo Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, T., Zhou, B., Gao, F. et al. Genetic linkage maps of white birches (Betula platyphylla Suk. and B. pendula Roth) based on RAPD and AFLP markers. Mol Breeding 27, 347–356 (2011). https://doi.org/10.1007/s11032-010-9436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9436-y

Keywords

Navigation