Skip to main content
Log in

Production of 22:2Δ5,Δ13 and 20:1Δ5 in Brassica carinata and soybean breeding lines via introduction of Limnanthes genes

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Seed oils of meadowfoam (Limnanthes douglasii, L. alba) contain very long-chain fatty acids of strategic importance for a number of industrial applications. These include the monoene 20 1Δ5 and the diene 22:2Δ5,Δ13. Engineering of meadowfoam-type oils in other oilseed crops is desirable for the production of these fatty acids as industrial feedstocks. Accordingly, we have targeted Brassica carinata and soybean (Glycine max) to trangenically engineer the biosynthesis of these unusual fatty acids. An L. douglasii seed-specific cDNA (designated Lim Des5) encoding a homolog of acyl-coenzyme A desaturases found in animals, fungi and cyanobacteria was expressed in B. carinata, which resulted in the accumulation of up to 10% 22:2Δ5,Δ13 in the seed oil. In soybean, co-expression of Lim Des5 with a cDNA (Lim FAE1) encoding an FAEl (elongase complex condensing enzyme) homolog from L. douglasii resulted in the accumulation of 20:1Δ5 to approximately 10% of the total fatty acids of seeds. The content of C20 and C22 fatty acids was also increased from <0.5% in non-transformed soybean seeds to >25% in seeds co-expressing the Lim. douglasii Des5 and FAE1 cDNAs. In contrast, expression of the Lim Des5 in Arabidopsis did not produce the expected 20:2Δ5,Δ11 in the seed oil. Cumulatively, these results demonstrate the utility of soybean and B. carinata for the production of vegetable oils containing novel C20 and C22 fatty acids, and confirm that the preferred substrates of the Lim Des5 are 20:0 and 22:1Δ3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Lim Des5 :

Limnanthes Acyl-CoA Δ 5 desaturase

Lim FAEl :

Limnanthes elongase complex condensing enzyme

CoA:

Coenzyme A

DEA:

Diethylamide

DW:

dry weight

ER:

endoplasmic reticulum

FAME:

fatty acid methyl ester

FFA:

free fatty acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

TAG:

triacylglycerol

TLC:

thin layer chromatography

VLCFA:

very long-chain fatty acid

References

  1. F.M. Ausubel R. Brent R.E. Kingston D.D. Moore J.G. Seidman J.A. Smith K. Stuhl (1995) Current Protocols in Molecular Biology, Vol 1-3 John Wiley and Sons New York 1–3

    Google Scholar 

  2. V. Babic R.S. Dalta G.J. Scoles W.A. Keller (1998) ArticleTitleDevelopment of an efficient Agrobacterium-mediated transformation system for Brassica carinata Plant Cell Rep. 17 183–188

    Google Scholar 

  3. E.G. Bligh W.J. Dyer (1959) ArticleTitleA rapid method of total lipid extraction and purification Can. J. Biochem. Physiol. 37 911–917

    Google Scholar 

  4. D.A. Burg R. Kleiman (1991) ArticleTitlePreparation of meadowfoam dimer acids and dimer esters and their use as lubricants J. Am. Oil Chem. Soc. 68 600–603

    Google Scholar 

  5. E.B. Cahoon E.-F. Marillia K.L. Stecca S.E. Hall D.C. Taylor A.J. Kinney (2000) ArticleTitleProduction of fatty acid components of meadowfoam oil in somatic soybean embryos Plant Physiol. 124 243–251

    Google Scholar 

  6. E.B. Cahoon J.A. Schnurr E.A. Huffman R.E. Minto (2003) ArticleTitleFungal responsive fatty acid acetylenases occur widely in evolutionarily distant plant families Plant J. 34 671–683

    Google Scholar 

  7. R.S.S. Datla J.K. Hammerlindl B. Panchuk L.E. Pelcher W.A. Keller (1992) ArticleTitleModified binary plant transformation vectors with the wild-type gene encoding NPTII Gene 211 383–384

    Google Scholar 

  8. J.J. Doyle M.A. Schuler W.D. Godette V. Zenger R.N. Beachy J.L. Slightom (1986) ArticleTitleThe glycosated seed storage protein of Glycine max Phaseolus vulgaris: structural homologies of genes and proteins J. Biol. Chem. 261 9228–9238

    Google Scholar 

  9. S.M. Erhan R. Kleiman T.A. Isbell (1993) ArticleTitleEstolides from meadowfoam oil fatty acids and other monounsaturated acyl moieties in developing seeds J Am. Oil Chem. Soc. 70 460–465

    Google Scholar 

  10. E. Fehling D.J. Murphy K.D. Mukherjee (1990) ArticleTitleBiosynthesis of triacylglycerols containing very long-chain monounsaturated acyl moieties in developing seeds Plant Physiol. 94 492–498

    Google Scholar 

  11. J.J. Finer M.D. McMullen (1991) ArticleTitleTransformation of soybean via particle bombardment of embryonic suspension culture tissue In Vitro Cell Dev. Biol. 27 175–182

    Google Scholar 

  12. L. Gritz J. Davies (1983) ArticleTitlePlasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli Saccharomyces cerevisiae Gene 25 179–188

    Google Scholar 

  13. F. Hirsinger (1989) New annual oil crops G. R¢belen R.K. Downey A. Ashri (Eds) Oil Crops of the World McGraw-Hill New York 518–532

    Google Scholar 

  14. T.A. Isbell B.A. Plattner (1997) ArticleTitleA highly regioselective synthesis of δ-lactones from meadowfoam fatty acids J. Am. Oil Chem. Soc. 74 153–158

    Google Scholar 

  15. T.A. Isbell T.A. Abbott K.D. Carlson (1999) ArticleTitleOxidative stability of vegetable oils in binary mixtures with meadowfoam oil Ind. Crops Prod. 9 15–123

    Google Scholar 

  16. K.D. Jofuku R.B. Goldberg (1989) ArticleTitleKunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants Plant Cell 1 1079–1093

    Google Scholar 

  17. Jung R. and Kinney A.J. 2001. Hypoallergenic transgenic soybeans. World Patent Application PCT WO 01/68887.

  18. V. Katavic D.W. Reed D.C. Taylor E.M. Giblin D.L. Barton J-T. Zou S.L. MacKenzie P.S. Covello L. Kunst (1995) ArticleTitleAlteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity Plant Physiol. 108 399–409

    Google Scholar 

  19. C. Koncz J. Schell (1986) ArticleTitleThe promoter of T L -DNA gene 5 controls the tissue-specific expression of chimaeric genes by a novel type of Agrobacterium binary vector Mol. Gen. Genet. 204 383–396

    Google Scholar 

  20. I. L¨den M. Frentzen (1990) ArticleTitleTriacylglycerol biosynthesis in developing seeds of Tropaeolum majus L. and Limnanthes douglasii R Br. Planta 188 215–224

    Google Scholar 

  21. E-F. Marillia E.M. Giblin P.S. Covello D.C. Taylor (2002) ArticleTitleExpression of Meadowfoam Des 5 FAE1 Genes in yeast and in transgenic soybean somatic embryos and their roles in fatty acid modification Plant Physiol. Biochem. 40 821–828

    Google Scholar 

  22. A.A. Millar M Wrischer L. Kunst (1998) ArticleTitleAccumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology Plant Cell 11 1889–1902

    Google Scholar 

  23. R.W. Miller M.E. Daxenbichler F.R. Earle H.S. Gentry (1964) ArticleTitleSearch for new industrial oils VIII. The genus Limnanthes J. Am. Oil Chem. Soc. 41 167–169

    Google Scholar 

  24. R.A. Moreau M.R. Pollard P.K. Stumpf (1981) ArticleTitleProperties of a Δ5 fatty acyl-CoA desaturase in the cotyledons of developing Limnanathes alba Arch. Biochem. Biophys. 209 376–384

    Google Scholar 

  25. R. Nillson C. Liljenburg (1991) ArticleTitleThe determination of double bond positions in polyunsaturated fatty acids-gas chromatogaphy/mass spectrometry of the diethylamide derivative Phytochem. Anal. 2 253–259

    Google Scholar 

  26. B.E. Phillips C.R. Smith W.H. Tallent (1971) ArticleTitleGlycerides of Limnanthes douglasii seed oil Lipids 6 93–99

    Google Scholar 

  27. M.R. Pollard P.K. Stumpf (1980a) ArticleTitleBiosynthesis of C20 and C22 fatty acids by developing seeds of Limnanthes alba. chain elongation and Δ5 desaturation Plant Physiol. 66 649–655

    Google Scholar 

  28. M.R. Pollard P.K. Stumpf (1980b) ArticleTitleLong chain (C20 and C22) fatty acid biosynthesis in developing seeds of Tropaeolum majus. An in vivo study Plant Physiol. 66 641–648

    Google Scholar 

  29. J. Sambrook E.F. Fritsch T. Maniatis (1989) Molecular Cloning: A Laboratory Manual, 2nd edn Cold Spring Harbor Laboratory Press Cold Spring Harbor

    Google Scholar 

  30. L. Sandager S. Stymne (2000) ArticleTitleCharacterisation of enzymes determining fatty acid chain length in developing Limnanthes douglasii J. Plant Physiol. 156 617–622

    Google Scholar 

  31. S. Stymne M. Bafor L. Jonsson E. Wiberg K. Stobart (1990) Triacylglycerol assembly P.J. Quinn J.L. Harwood (Eds) Plant Lipid Biochemistry, Structure and Utilization Portland Press London 191–197

    Google Scholar 

  32. D.C. Taylor D.L. Barton K.P. Rioux S.L. MacKenzie D.W. Redd E.W. Underhill M.K. Pomeroy K. Weber (1992) ArticleTitleBiosynthesis of acyl lipids containing very long chain fatty acids in microspore-derived and Zygotic Embryos of Brassica napus L cv Reston Plant Physiol. 99 1609–1618

    Google Scholar 

  33. J-T. Zou V. Katavic E.M. Giblin D.L. Barton S.L. MacKenzie W.A. Keller X. Hu D.C. Taylor (1997) ArticleTitleModification of seed oil content and Acyl composition in Brassicaceae by expression of a yeast sn-2 Acyltransferase Gene Plant Cell 9 909–923

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadhav, A., Marillia, EF., Babic, V. et al. Production of 22:2Δ5,Δ13 and 20:1Δ5 in Brassica carinata and soybean breeding lines via introduction of Limnanthes genes. Mol Breeding 15, 157–167 (2005). https://doi.org/10.1007/s11032-004-4730-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-004-4730-1

Keywords

Navigation