Skip to main content
Log in

Validation of quercetin in the treatment of colon cancer with diabetes via network pharmacology, molecular dynamics simulations, and in vitro experiments

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

This study built a prognostic model for CRC-diabetes and analyzed whether quercetin could be used for CRC-diabetes treatment through a network of pharmacology, molecular dynamics simulation, bioinformatics, and in vitro experiments. First, multivariate Cox proportional hazards regression was used to construct the prognosis modelof CRC-diabetes. Then, the intersection of quercetin target genes with CRC-diabetes genes was used to find the potential target for quercetin in the treatment of CRC-diabetes. Molecular docking and molecular dynamics simulations were used to screen the potential targets for quercetin in the treatment of CRC-diabetes. Finally, we verified the target and pathway of quercetin in the treatment of CRC-diabetes through in vitro experiments. Through molecular docking, seven proteins (HMOX1, ACE, MYC, MMP9, PLAU, MMP3, and MMP1) were selected as potential targets of quercetin. We conducted molecular dynamics simulations of quercetin and the above proteins, respectively, and found that the binding structure of quercetin with MMP9 and PLAU was relatively stable. Finally, according to the results of Western blot results, it was confirmed that quercetin could interact with MMP9. The experimental results show that quercetin may affect the JNK pathway, glycolysis, and epithelial–mesenchymal transition (EMT) to treat CRC-diabetes. Based on the TCGA, TTD, DrugBank, and other databases, a prediction model that can effectively predict the prognosis of colon cancer patients with diabetes was constructed. According to experiment results, quercetin can regulate the expression of MMP9. By acting on the JNK pathway, glycolysis, and EMT, it can treat colon cancer patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Yang F, Liang H, Rosenthal RJ et al (2021) The significant interaction between age and diabetes mellitus for colorectal cancer: evidence from Nhanes data 1999–2016. Prim Care Diabetes 15:518–521. https://doi.org/10.1016/j.pcd.2021.02.006

    Article  PubMed  Google Scholar 

  3. Pang Y, Kartsonaki C, Guo Y et al (2018) Diabetes, plasma glucose and incidence of colorectal cancer in Chinese adults: a prospective study of 0.5 million people. J Epidemiol Community Health 72:919–925. https://doi.org/10.1136/jech-2018-210651

    Article  PubMed  Google Scholar 

  4. Yu J, Hu D, Wang L et al (2022) Hyperglycemia induces gastric carcinoma proliferation and migration via the pin1/brd4 pathway. Cell Death Discov 8:224. https://doi.org/10.1038/s41420-022-01030-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi P, Zhang L, Liu Y et al (2022) Clinicopathological features and prognosis of papillary thyroid cancer patients with type 2 diabetes mellitus. Gland Surg 11:358–368. https://doi.org/10.21037/gs-21-905

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vander HM, Cantley LC, Thompson CB (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  Google Scholar 

  7. Jeong HS, Lee DH, Kim SH et al (2022) Hyperglycemia-induced oxidative stress promotes tumor metastasis by upregulating vwf expression in endothelial cells through the transcription factor gata1. Oncogene 41:1634–1646. https://doi.org/10.1038/s41388-022-02207-y

    Article  CAS  PubMed  Google Scholar 

  8. Qian J, Tao D, Shan X et al (2022) Role of angiogenesis in beta-cell epithelial-mesenchymal transition in chronic pancreatitis-induced diabetes. Lab Invest 102:290–297. https://doi.org/10.1038/s41374-021-00684-5

    Article  CAS  PubMed  Google Scholar 

  9. Chen CM, Juan SH, Pai MH et al (2018) Hyperglycemia induces epithelial-mesenchymal transition in the lungs of experimental diabetes mellitus. Acta Histochem 120:525–533. https://doi.org/10.1016/j.acthis.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  10. He X, Cheng X, Ding J et al (2022) Hyperglycemia induces mir-26-5p down-regulation to overexpress pfkfb3 and accelerate epithelial-mesenchymal transition in gastric cancer. Bioengineered 13:2902–2917. https://doi.org/10.1080/21655979.2022.2026730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang B, Wang S, Wang W et al (2021) Hyperglycemia promotes liver metastasis of colorectal cancer via upregulation of integrin alphavbeta6. Med Sci Monit 27:e930921. https://doi.org/10.12659/MSM.930921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang YH, Yang HJ, Chen HW et al (2022) Characterization of collapsin response mediator protein 2 in colorectal cancer progression in subjects with diabetic comorbidity. Cells. https://doi.org/10.3390/cells11040727

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liang H (2020) Advanced glycation end products induce proliferation, invasion and epithelial-mesenchymal transition of human sw480 colon cancer cells through the pi3k/akt signaling pathway. Oncol Lett 19:3215–3222. https://doi.org/10.3892/ol.2020.11413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tran TT, Naigamwalla D, Oprescu AI et al (2006) Hyperinsulinemia, but not other factors associated with insulin resistance, acutely enhances colorectal epithelial proliferation in vivo. Endocrinology 147:1830–1837. https://doi.org/10.1210/en.2005-1012

    Article  CAS  PubMed  Google Scholar 

  15. Ferguson RD, Novosyadlyy R, Fierz Y et al (2012) Hyperinsulinemia enhances c-myc-mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast Cancer Res 14:R8. https://doi.org/10.1186/bcr3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mills KT, Bellows CF, Hoffman AE et al (2013) Diabetes mellitus and colorectal cancer prognosis: a meta-analysis. Dis Colon Rectum 56:1304–1319. https://doi.org/10.1097/DCR.0b013e3182a479f9

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cao W, Jin M, Yang K et al (2021) Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy. J Nanobiotechnology 19:325. https://doi.org/10.1186/s12951-021-01074-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meng X, Lu Z, Lv Q et al (2022) Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapy. Acta Biomater. https://doi.org/10.1016/j.actbio.2022.04.022

    Article  PubMed  Google Scholar 

  19. Xiao Q, Xiao J, Liu J et al (2022) Metformin suppresses the growth of colorectal cancer by targeting Inhba to inhibit tgf-beta/pi3k/akt signaling transduction. Cell Death Dis 13:202. https://doi.org/10.1038/s41419-022-04649-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scherneck S, Schlinke N, Beck E et al (2018) Pregnancy outcome after first-trimester exposure to metformin: a prospective cohort study. Reprod Toxicol 81:79–83. https://doi.org/10.1016/j.reprotox.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  21. Flores IR, Vasquez-Murrieta MS, Franco-Hernandez MO et al (2021) Bioactive compounds in tomato (Solanum lycopersicum) variety Saladette and their relationship with soil mineral content. Food Chem 344:128608. https://doi.org/10.1016/j.foodchem.2020.128608

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Wu H, Xiong L et al (2020) Quercetin downregulates cyclooxygenase-2 expression and hif-1alpha/vegf signaling-related angiogenesis in a mouse model of abdominal aortic aneurysm. Biomed Res Int 2020:9485398. https://doi.org/10.1155/2020/9485398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Warren CA, Paulhill KJ, Davidson LA et al (2009) Quercetin may suppress rat aberrant crypt foci formation by suppressing inflammatory mediators that influence proliferation and apoptosis. J Nutr 139:101–105. https://doi.org/10.3945/jn.108.096271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao L, Luo G, Tang Y et al (2018) Quercetin and iron metabolism: what we know and what we need to know. Food Chem Toxicol 114:190–203. https://doi.org/10.1016/j.fct.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  25. Jeong SM, Kang MJ, Choi HN et al (2012) Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr Res Pract 6:201–207. https://doi.org/10.4162/nrp.2012.6.3.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eid HM, Nachar A, Thong F et al (2015) The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag 11:74–81. https://doi.org/10.4103/0973-1296.149708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen X, Si Y, Wang Z et al (2016) Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of pi3k/akt signaling. Int J Mol Med 38:619–626. https://doi.org/10.3892/ijmm.2016.2625

    Article  CAS  PubMed  Google Scholar 

  28. Srivastava S, Somasagara RR, Hegde M et al (2016) Quercetin, a natural flavonoid interacts with dna, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 6:24049. https://doi.org/10.1038/srep24049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maurya AK, Vinayak M (2016) Pi-103 and quercetin attenuate pi3k-akt signaling pathway in t- cell lymphoma exposed to hydrogen peroxide. Plos One 11:e160686. https://doi.org/10.1371/journal.pone.0160686

    Article  CAS  Google Scholar 

  30. Pratheeshkumar P, Budhraja A, Son YO et al (2012) Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting vegfr- 2 regulated akt/mtor/p70s6k signaling pathways. Plos One 7:e47516. https://doi.org/10.1371/journal.pone.0047516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mukherjee A, Mishra S, Kotla NK et al (2019) Semisynthetic quercetin derivatives with potent antitumor activity in colon carcinoma. ACS Omega 4:7285–7298. https://doi.org/10.1021/acsomega.9b00143

    Article  CAS  Google Scholar 

  32. Barabas L, Hritz I, Istvan G et al (2021) The behavior of mmp-2, mmp-7, mmp-9, and their inhibitors timp-1 and timp-2 in adenoma-colorectal cancer sequence. Dig Dis 39:217–224. https://doi.org/10.1159/000511765

    Article  PubMed  Google Scholar 

  33. Wishart DS, Feunang YD, Guo AC et al (2018) Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Ouyang S, Yu B et al (2010) Pharmmapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38:W609–W614. https://doi.org/10.1093/nar/gkq300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou Y, Zhang Y, Lian X et al (2022) Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res 50:D1398–D1407. https://doi.org/10.1093/nar/gkab953

    Article  CAS  PubMed  Google Scholar 

  36. Ru J, Li P, Wang J et al (2014) Tcmsp: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 6:13. https://doi.org/10.1186/1758-2946-6-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gfeller D, Grosdidier A, Wirth M et al (2014) Swisstargetprediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42:W32–W38. https://doi.org/10.1093/nar/gku293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Szklarczyk D, Morris JH, Cook H et al (2017) The string database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  40. Morris GM, Huey R, Lindstrom W et al (2009) Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with pymol and autodock/vina. J Comput Aided Mol Des 24:417–422. https://doi.org/10.1007/s10822-010-9352-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khanal P, Patil VS, Bhandare VV et al (2022) Systems and in vitro pharmacology profiling of diosgenin against breast cancer. Front Pharmacol 13:1052849. https://doi.org/10.3389/fphar.2022.1052849

    Article  CAS  PubMed  Google Scholar 

  43. Van Der Spoel D, Lindahl E, Hess B et al (2005) Gromacs: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  44. Khanal P, Patil VS, Bhandare VV et al (2022) Computational investigation of benzalacetophenone derivatives against SARS-cov-2 as potential multi-target bioactive compounds. Comput Biol Med 146:105668. https://doi.org/10.1016/j.compbiomed.2022.105668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dwivedi P, Patil VS, Khanal P et al (2022) System biology-based investigation of silymarin to trace hepatoprotective effect. Comput Biol Med 142:105223. https://doi.org/10.1016/j.compbiomed.2022.105223

    Article  CAS  PubMed  Google Scholar 

  46. Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  47. Supabphol S, Seubwai W, Wongkham S et al (2021) High glucose: an emerging association between diabetes mellitus and cancer progression. J Mol Med (Berl) 99:1175–1193. https://doi.org/10.1007/s00109-021-02096-w

    Article  CAS  PubMed  Google Scholar 

  48. Xu X, Chen B, Zhu S et al (2019) Hyperglycemia promotes snail-induced epithelial-mesenchymal transition of gastric cancer via activating eno1 expression. Cancer Cell Int 19:344. https://doi.org/10.1186/s12935-019-1075-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. https://doi.org/10.1021/np200906s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim GT, Lee SH, Kim JI et al (2014) Quercetin regulates the sestrin 2-ampk-p38 mapk signaling pathway and induces apoptosis by increasing the generation of intracellular ros in a p53-independent manner. Int J Mol Med 33:863–869. https://doi.org/10.3892/ijmm.2014.1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Czerwonka A, Maciolek U, Kalafut J et al (2020) Anticancer effects of sodium and potassium quercetin-5’-sulfonates through inhibition of proliferation, induction of apoptosis, and cell cycle arrest in the ht-29 human adenocarcinoma cell line. Bioorg Chem 94:103426. https://doi.org/10.1016/j.bioorg.2019.103426

    Article  CAS  PubMed  Google Scholar 

  52. Ozsoy S, Becer E, Kabadayi H et al (2020) Quercetin-mediated apoptosis and cellular senescence in human colon cancer. Anticancer Agents Med Chem 20:1387–1396. https://doi.org/10.2174/1871520620666200408082026

    Article  CAS  PubMed  Google Scholar 

  53. Hao YH, Lafita-Navarro MC, Zacharias L et al (2019) Induction of lef1 by myc activates the wnt pathway and maintains cell proliferation. Cell Commun Signal 17:129. https://doi.org/10.1186/s12964-019-0444-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lou J, Lv JX, Zhang YP et al (2022) Osi-027 inhibits the tumorigenesis of colon cancer through mediation of c-myc/foxo3a/puma axis. Cell Biol Int. https://doi.org/10.1002/cbin.11792

    Article  PubMed  Google Scholar 

  55. Kim HY, Kim YM, Hong S (2019) Astaxanthin suppresses the metastasis of colon cancer by inhibiting the myc-mediated downregulation of microrna-29a-3p and microrna-200a. Sci Rep 9:9457. https://doi.org/10.1038/s41598-019-45924-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727. https://doi.org/10.1242/jcs.00063

    Article  CAS  PubMed  Google Scholar 

  57. Jin X, Yagi M, Akiyama N et al (2006) Matriptase activates stromelysin (mmp-3) and promotes tumor growth and angiogenesis. Cancer Sci 97:1327–1334. https://doi.org/10.1111/j.1349-7006.2006.00328.x

    Article  CAS  PubMed  Google Scholar 

  58. Inuzuka K, Ogata Y, Nagase H et al (2000) Significance of coexpression of urokinase-type plasminogen activator, and matrix metalloproteinase 3 (stromelysin) and 9 (gelatinase b) in colorectal carcinoma. J Surg Res 93:211–218. https://doi.org/10.1006/jsre.2000.5952

    Article  CAS  PubMed  Google Scholar 

  59. Wang K, Zheng J, Yu J et al (2020) Knockdown of mmp1 inhibits the progression of colorectal cancer by suppressing the pi3k/akt/cmyc signaling pathway and emt. Oncol Rep 43:1103–1112. https://doi.org/10.3892/or.2020.7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen H, Ye Y, Yang Y et al (2020) Tipe-mediated up-regulation of mmp-9 promotes colorectal cancer invasion and metastasis through mkk-3/p38/nf-kappab pro-oncogenic signaling pathway. Signal Transduct Target Ther 5:163. https://doi.org/10.1038/s41392-020-00276-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhong L, Simoneau B, Huot J et al (2017) P38 and jnk pathways control e-selectin-dependent extravasation of colon cancer cells by modulating mir-31 transcription. Oncotarget 8:1678–1687. https://doi.org/10.18632/oncotarget.13779

    Article  PubMed  Google Scholar 

  62. Uemura S, Matsushita H, Li W et al (2001) Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 88:1291–1298. https://doi.org/10.1161/hh1201.092042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This item is not applicable

Funding

This work was supported by the Anhui Provincial Natural Science Foundation (No.:2208085MH240), Quality Engineering Project of Anhui Province (No.:2020jyxm0898; No.:2020jyxm0910), Clinical research project of Anhui Medical University (No.:2020xkj176), and Soft health science research of Anhui province (No.:2020WR01003).

Author information

Authors and Affiliations

Authors

Contributions

WZ, WC, MX, BC, and GC designed the idea of the article. WZ, ZZ, and PZ downloaded the data. WZ and KY conducted the bioinformatics analysis of the data. WZ and YL conducted molecular docking. WZ wrote the manuscript.

Corresponding authors

Correspondence to Guodong Cao, Bo Chen or Maoming Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Cao, W., Wang, M. et al. Validation of quercetin in the treatment of colon cancer with diabetes via network pharmacology, molecular dynamics simulations, and in vitro experiments. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10725-4

Keywords

Navigation