Skip to main content
Log in

Screening of potent STAT3-SH2 domain inhibitors from JAK/STAT compound library through molecular dynamics simulation

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The Signal Transducer and Activator of Transcription 3 (STAT3) protein is activated consistently in the tumor cells and thus studied as a potent target for cancer prevention. The TYR705-phosphorylated (pTyr) STAT3 forms a homo-dimer by binding to its recognition site in the Src Homology 2 (SH2) domain of another STAT3 monomer, causing cellular survival, proliferation, inflammation, and tumor invasion. Many inhibitors of STAT3-SH2 have recently been identified using both computational and experimental approaches. In this study, we used molecular docking, Absorption, Distribution, Metabolism, and Excretion/Toxicological (ADME/tox) and molecular dynamics modeling to examine binding affinities and specificities of 191 inhibitor drugs from the SELLECKCHEM database. The binding free energies of the inhibitors were calculated by Induced Fit Docking (IFD) prime energy. The binding hotspots of STAT3-SH2 were evaluated via binding energy decomposition and hydrogen bond distribution analysis, and the inhibitor compound's stability was assessed through MD simulation. (−)-Epigallocatechin gallate, Kaempferol-3-O-rutinoside, Picroside I, Saikosaponin D, and Ginsenoside Rk1 were found to be the top hit inhibitor compounds. They exhibited an exceptional docking score, a low binding free energy, interacted with the key amino acid residue, and showed significant ADME/tox moderation. These compounds were further proved to be favorable by their stability in an MD simulation run for 100 ns using GROMACS software. The inhibitors (−)-Epigallocatechin gallate, Kaempferol-3-O-rutinoside, and Saikosaponin D show improved stability in molecular dynamic modeling and are expected to have a significant STAT3-SH2 inhibitory effect against cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sehgal PB (2008) Paradigm shifts in the cell biology of STAT signaling. Semin Cell Dev Biol 19:329–340. https://doi.org/10.1016/j.semcdb.2008.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lim CP, Cao X (2006) Structure, function, and regulation of STAT proteins. Mol Biosyst 2:536. https://doi.org/10.1039/b606246f

    Article  CAS  PubMed  Google Scholar 

  3. Quesnelle KM, Boehm AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102:311–319. https://doi.org/10.1002/jcb.21475

    Article  CAS  PubMed  Google Scholar 

  4. Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637. https://doi.org/10.1038/sj.onc.1203481

    Article  CAS  PubMed  Google Scholar 

  5. Murray PJ (2007) The JAK-STAT signaling pathway: input and output integration. J Immunol 178:2623–2629. https://doi.org/10.4049/jimmunol.178.5.2623

    Article  CAS  PubMed  Google Scholar 

  6. Jing N, Tweardy DJ (2005) Targeting Stat3 in cancer therapy. Anticancer Drugs 16:601–607. https://doi.org/10.1097/00001813-200507000-00002

    Article  CAS  PubMed  Google Scholar 

  7. Weidler M, Rether J, Anke T, Erkel G (2000) Inhibition of Interleukin-6 signaling and Stat3 activation by a new class of bioactive cyclopentenone derivatives. Biochem Biophys Res Commun 276:447–453. https://doi.org/10.1006/bbrc.2000.3499

    Article  CAS  PubMed  Google Scholar 

  8. Schust J, Sperl B, Hollis A et al (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13:1235–1242. https://doi.org/10.1016/j.chembiol.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  9. Giraud S, Hurlstone A, Avril S, Coqueret O (2004) Implication of BRG1 and cdk9 in the STAT3-mediated activation of the p21waf1 gene. Oncogene 23:7391–7398. https://doi.org/10.1038/sj.onc.1207972

    Article  CAS  PubMed  Google Scholar 

  10. Giraud S, Bienvenu F, Avril S et al (2002) Functional interaction of STAT3 transcription factor with the coactivator NcoA/SRC1a. J Biol Chem 277:8004–8011. https://doi.org/10.1074/jbc.M111486200

    Article  CAS  PubMed  Google Scholar 

  11. Lee H, Deng J, Kujawski M et al (2010) STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 16:1421–1428. https://doi.org/10.1038/nm.2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pensa S, Regis G, Boselli D, Novelli F, Poli V (2009) STAT1 and STAT3 in tumorigenesis: two sides of the same coin? In: JAK-STAT pathway in disease, 1st edn. CRC Press, Boca Raton, pp 100–121

  13. Wong ALA, Hirpara JL, Pervaiz S et al (2017) Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin Investig Drugs 26:883–887. https://doi.org/10.1080/13543784.2017.1351941

    Article  CAS  PubMed  Google Scholar 

  14. Yue P, Turkson J (2009) Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 18:45–56. https://doi.org/10.1517/13543780802565791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Turkson J, Ryan D, Kim JS et al (2001) Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 276:45443–45455. https://doi.org/10.1074/jbc.M107527200

    Article  CAS  PubMed  Google Scholar 

  16. Jing N, Zhu Q, Yuan P et al (2006) Targeting signal transducer and activator of transcription 3 with G-quartet oligonucleotides: a potential novel therapy for head and neck cancer. Mol Cancer Ther 5:279–286. https://doi.org/10.1158/1535-7163.MCT-05-0302

    Article  CAS  PubMed  Google Scholar 

  17. Chiba T (2016) Cronicon CANCER Opinion STAT3 inhibitors for cancer therapy—the rationale and remained problems. EC Cancer 1(S1):S1–S8

    Google Scholar 

  18. Turkson J, Zhang S, Mora LB et al (2005) A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J Biol Chem 280:32979–32988. https://doi.org/10.1074/jbc.M502694200

    Article  CAS  PubMed  Google Scholar 

  19. Siddiquee K, Zhang S, Guida WC et al (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 104:7391–7396. https://doi.org/10.1073/pnas.0609757104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee H-M, Chan DS-H, Yang F et al (2010) Identification of natural product Fonsecin B as a stabilizing ligand of c-myc G-quadruplex DNA by high-throughput virtual screening. Chem Commun 46:4680. https://doi.org/10.1039/b926359d

    Article  CAS  Google Scholar 

  21. Chan DS-H, Lee H-M, Yang F et al (2010) Structure-based discovery of natural-product-like TNF-α inhibitors. Angew Chem Int Ed 49:2860–2864. https://doi.org/10.1002/anie.200907360

    Article  CAS  Google Scholar 

  22. Leung C-H, Chan DS-H, Yang H et al (2011) A natural product-like inhibitor of NEDD8-activating enzyme. Chem Commun 47:2511. https://doi.org/10.1039/c0cc04927a

    Article  CAS  Google Scholar 

  23. Zhong H-J, Pui-Yan Ma V, Cheng Z et al (2012) Discovery of a natural product inhibitor targeting protein neddylation by structure-based virtual screening. Biochimie 94:2457–2460. https://doi.org/10.1016/j.biochi.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  24. Ma D-L, Chan DS-H, Leung C-H (2013) Drug repositioning by structure-based virtual screening. Chem Soc Rev 42:2130. https://doi.org/10.1039/c2cs35357a

    Article  CAS  PubMed  Google Scholar 

  25. Miklossy G, Hilliard TS, Turkson J (2013) Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 12:611–629. https://doi.org/10.1038/nrd4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iwaloye O, Elekofehinti OO, Momoh AI et al (2020) In silico molecular studies of natural compounds as possible anti-Alzheimer’s agents: ligand-based design. Netw Model Anal Health Inform Bioinform 9:54. https://doi.org/10.1007/s13721-020-00262-7

    Article  Google Scholar 

  27. Iwaloye O, Elekofehinti OO, Oluwarotimi EA et al (2020) Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: in silico studies. In Silico Pharmacol 8:2. https://doi.org/10.1007/s40203-020-00054-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schrödinger (2018) LigPrep. Schrödinger, LLC, New York

    Google Scholar 

  29. Harder E, Damm W, Maple J et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  PubMed  Google Scholar 

  30. Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84. https://doi.org/10.1111/j.1747-0285.2005.00327.x

    Article  CAS  PubMed  Google Scholar 

  31. Durán-Iturbide NA, Díaz-Eufracio BI, Medina-Franco JL (2020) In silico ADME/Tox profiling of natural products: a focus on BIOFACQUIM. ACS Omega 5:16076–16084. https://doi.org/10.1021/acsomega.0c01581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rubin Grandis J, Zeng Q, Drenning SD (2000) Epidermal growth factor receptor-mediated Stat3 signaling blocks apoptosis in head and neck cancer. Laryngoscope 110:868–874. https://doi.org/10.1097/00005537-200005000-00016

    Article  CAS  PubMed  Google Scholar 

  34. Nepomuceno RR, Snow AL, Robert Beatty P et al (2002) Constitutive activation of Jak/STAT proteins in Epstein-Barr virus-infected B-cell lines from patients with posttransplant lymphoproliferative disorder1. Transplantation 74:396–402. https://doi.org/10.1097/00007890-200208150-00017

    Article  CAS  PubMed  Google Scholar 

  35. Samaan A, Mahana W (2007) Constitutive and induced activation of JAK/Stat pathway in leukemogenic and asymptomatic human T-cell lymphotropic virus type 1 (HTLV-1) transformed rabbit cell lines. Immunol Lett 109:113–119. https://doi.org/10.1016/j.imlet.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  36. Báez-Santos YM, Mielech AM, Deng X et al (2014) Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East Respiratory Syndrome Coronavirus. J Virol 88:12511–12527. https://doi.org/10.1128/JVI.01294-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maffucci I, Hu X, Fumagalli V, Contini A (2018) An efficient implementation of the Nwat-MMGBSA method to rescore docking results in medium-throughput virtual screenings. Front Chem. https://doi.org/10.3389/fchem.2018.00043

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mishra S, Dahima R (2019) In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SwissADME predictor. J Drug Deliv Ther 9:366–369. https://doi.org/10.22270/JDDT.V9I2-S.2710

    Article  Google Scholar 

  39. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  40. Baell J, Congreve M, Leeson P, Abad-Zapatero C (2013) Ask the Experts: past, present and future of the rule of five. Future Med Chem 5:745–752. https://doi.org/10.4155/fmc.13.61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by MHRD-Rashtriya Uchchatar Shiksha Abhiyan (RUSA) 2.0-Bharathiar Cancer and Theragnostic Research Centre (BCTRC), Bharathiar University, Coimbatore, India (BU/RUSA2.0/BCTRC/2020/BCTRC-CT06). The authors also thank B. Satheeswaran, Ph.D. Research Scholar, Bharathiar University for his valuable inputs.

Author information

Authors and Affiliations

Authors

Contributions

EP and SM conceived the project; SM wrote the entire manuscript. SM, AB, VH and EP performed the experiment.

Corresponding author

Correspondence to Ekambaram Perumal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoharan, S., Balakrishnan, A., Hemamalini, V. et al. Screening of potent STAT3-SH2 domain inhibitors from JAK/STAT compound library through molecular dynamics simulation. Mol Divers 27, 1297–1308 (2023). https://doi.org/10.1007/s11030-022-10490-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10490-w

Keywords

Navigation